• Title/Summary/Keyword: Tributyrin emulsion

Search Result 4, Processing Time 0.018 seconds

Preparation and Characterization of Tributyrin Sub-micron Emulsion as Carrier for Paclitaxel

  • Fei, Xiang;Xu, Wenting;Yue, Yuan;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.295-300
    • /
    • 2011
  • Paclitaxel is a well known anticancer agent and has been a pharmaceutical challenge because of its extremely poor water-solubility and susceptibility to the p-glycoprotein (p-gp)-mediated efflux in multi-drug resistant (MDR) cancer cells. Tributyrin (TB), a triglyceride with relatively short fatty acid chains, was chosen as solubilizing vehicle for paclitaxel based on the solubility study (26.6 mg/mL). Tributyrin (10%) o/w emulsion containing paclitaxel (5%), egg phosphatidylcholine (5%) and pegylated phospholipid (0.5%) was prepared by high pressure homogenization to obtain submicron-sized emulsion. The mean particle size of the resultant TB emulsion was 395.5 nm. Paclitaxel in TB emulsion showed higher anticancer activity against human breast cancer cell line, MCF-7, than free form delivered in DMSO solution. On the other hand, its anticancer activity was significantly reduced in MCF-7/ADR, a MDR variant cancer cell line of MCF-7, and recovered by the presence of verapamil, suggesting of the susceptibility to the p-gp mediated efflux even though paclitaxel was encapsulated into emulsion. The TB emulsion showed great potential as a promising vehicle for water-insoluble anticancer agent, paclitaxel.

Stability of the Oil-in-water Type Triacylglycerol Emulsions

  • Hesson Chung;Kim, Tase-Woo;Kwon, Ich-Chan;Jeong, Seo-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.284-288
    • /
    • 2001
  • Lipid emulsions with saturated triacylglycerols (TAGs) with 4 to 10 carbons in each acyl chain were prepared to study how the oil component alters the stability of the lipid emul-sions when phosphatidylcholines were used as emulsifiers. The average droplet size of the emul-sions became smaller as the chain length of the TAG increased. For a given oil emulsion with smaller droplets was formed with an emulsifier having higher HLB value. The influence of HLB values on the droplet size was biggest for the tributyrin (C4) emulsion. For the tricaprylin(C8) emulsions, droplet size was identical at given emulsifier concentrations regardless of HLB values. The HLB value and the concentration of the emulsifiers also affect the droplet size of the emul-sions. The emulsions with smaller average droplet size were more stable than with bigger size for 20 days. The oil and water (o/w) interfacial tension in inversely proportional to the initial droplet size of the emulsion.

  • PDF

Antioxidant and Antibacterial Activity of Caprylic Acid Vanillyl Ester Produced by Lipase-Mediated Transesterification

  • Kim, Jin Ju;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.317-326
    • /
    • 2021
  • Vanillyl alcohol (VA), which is abundant in Vanilla bean, has strong antioxidant activity. However, the use of VA in the food and cosmetics industries is limited, due to its low solubility in emulsion or organic solvents. Meanwhile, medium chain fatty acids and medium chain monoglycerides have antibacterial activity. We synthesized butyric acid vanillyl ester (BAVE) or caprylic acid vanillyl ester (CAVE) from VA with tributyrin or tricaprylin through transesterification reaction using immobilized lipases. BAVE and CAVE scavenged 2,2-diphenyl-1-picrylhydrazyl radicals in organic solvents. In addition, BAVE and CAVE decreased the production rate of conjugated diene and triene in the menhaden oil-in-water emulsion system. While BAVE showed no antibacterial activity, CAVE showed antibacterial activity against food spoilage bacteria, including Bacillus coagulans. In this study, the antibacterial activity of vanillyl ester with medium chain fatty acid was first revealed. Zeta potential measurements confirmed that BAVE and CAVE were inserted into B. coagulans membrane. In addition, the propidium iodide uptake assay and fluorescent microscopy showed that CAVE increased B. coagulans membrane permeability. Therefore, CAVE is expected to play an important role in the food and cosmetics industries as a bi-functional material with both antioxidant and antibacterial activities.

Production and Characterization of Lipopeptide Biosurfactant from Bacillus subtilis A8-8

  • Lee Sang-Cheol;Yoo Ju-Soon;Kim Sun-Hee;Chung Soo-Yeol;Hwang Cher-Won;Joo Woo-Hong;Choi Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.716-723
    • /
    • 2006
  • A biosurfactant-producing bacterial strain was selected from oil-contaminated soil because of its ability to degrade crude oil and tributyrin $(C_{4:0})$. The strain was identified as Bacillus subtilis A8-8 based on its morphological, biochemical, and physiological characteristics. When B. subtilis A8-8 was grown with crude oil as the sole carbon source, the biosurfactant from the strain emulsified crude oil, vegetable oil, and hydrocarbons. Soybean oil was the optimum substrate for the emulsifying activity and emulsion stability of the biosurfactant, both of which were superior to those of several commercially available surfactants. The biosurfactant was purified by a procedure including HCl precipitation, methanol treatment, and silica-gel chromatography. The partially purified biosurfactant was analyzed by TLC (thin-layer chromatography), SDS-PAGE, and HPLC and it reduced the surface tension of water from 72 mN/m to 26 mN/m at a concentration of 30 mg/l. Therefore, the purified lipopeptide biosurfactant has strong properties as an emulsifying agent and acts as an emulsion-stabilizing agent.