Browse > Article
http://dx.doi.org/10.4333/KPS.2011.41.5.295

Preparation and Characterization of Tributyrin Sub-micron Emulsion as Carrier for Paclitaxel  

Fei, Xiang (Department of Pharmaceutical Engineering, Woosuk University)
Xu, Wenting (Department of Pharmaceutical Engineering, Woosuk University)
Yue, Yuan (Department of Pharmaceutical Engineering, Woosuk University)
Lee, Mi-Kyung (College of Pharmacy, Woosuk University)
Publication Information
Journal of Pharmaceutical Investigation / v.41, no.5, 2011 , pp. 295-300 More about this Journal
Abstract
Paclitaxel is a well known anticancer agent and has been a pharmaceutical challenge because of its extremely poor water-solubility and susceptibility to the p-glycoprotein (p-gp)-mediated efflux in multi-drug resistant (MDR) cancer cells. Tributyrin (TB), a triglyceride with relatively short fatty acid chains, was chosen as solubilizing vehicle for paclitaxel based on the solubility study (26.6 mg/mL). Tributyrin (10%) o/w emulsion containing paclitaxel (5%), egg phosphatidylcholine (5%) and pegylated phospholipid (0.5%) was prepared by high pressure homogenization to obtain submicron-sized emulsion. The mean particle size of the resultant TB emulsion was 395.5 nm. Paclitaxel in TB emulsion showed higher anticancer activity against human breast cancer cell line, MCF-7, than free form delivered in DMSO solution. On the other hand, its anticancer activity was significantly reduced in MCF-7/ADR, a MDR variant cancer cell line of MCF-7, and recovered by the presence of verapamil, suggesting of the susceptibility to the p-gp mediated efflux even though paclitaxel was encapsulated into emulsion. The TB emulsion showed great potential as a promising vehicle for water-insoluble anticancer agent, paclitaxel.
Keywords
Paclitaxel; Tributyrin emulsion; Water-insoluble; Anticancer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shibata, H., Kanamaru, R., Sato, T., Ishioka, C., Konishi, Y., Ishikawa, A., Wakui, A., Tsuruo, T., 1990. Increase in the level of P-glycoprotein mRNA expression in multidrug-resistant K562 cell lines treated with sodium butyrate is not accompanied with erythroid differentiation. Jpn. J. Cancer Res. 81(12), 1214-1217.   DOI
2 Singh, S., Dash, A.K., 2009. Paclitaxel in cancer treatment: perspectives and prospects of its delivery challenges. Crit. Rev. Ther. Drug Carrier Syst. 26(4), 333-372.   DOI   ScienceOn
3 Sznitowska, M., Klunder, M., Placzek, M., 2008. Paclitaxel solubility in aqueous dispersions and mixed micellar solutions of lecithin. Chem. Pharm. Bull. (Tokyo) 56(1), 70-74.   DOI
4 Tarr, B.D., Sambandan, T.G., Yalkowsky, S.H., 1987. A new parenteral emulsion for the administration of taxol. Pharm. Res. 4(2), 162-165.   DOI
5 Wong, H.L., Bendayan, R., Rauth, A.M., Xue, H.Y., Babakhanian, K., Wu, X.Y., 2006. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther. 317(3), 1372-1381.   DOI
6 Yin, H., Chow, G.M., 2009. Effects of oleic acid surface coating on the properties of nickel ferrite nanoparticles/PLA composites. J. Biomed. Mater. Res. A 91(2), 331-341.
7 Zhao, Y.X., Liang, W.Q., Wang, Y., Liu, D.X., 2011. Cationic submicron emulsions overcome multidrug resistance in SGC7901/VCR cells. Pharmazie 66(2), 130-135.
8 Marks, D.C., Davey, M.W., Davey, R.A., Kidman, A.D., 1995. Expression of multidrug resistance in response to differentiation in the K562 human leukaemia cell line. Biochem. Pharmacol. 50(4), 475-480.   DOI
9 Massart, C., Poirier, C., Fergelot, P., Fardel, O., Gibassier, J., 2005. Effect of sodium butyrate on doxorubicin resistance and expression of multidrug resistance genes in thyroid carcinoma cells. Anticancer Drugs 16(3), 255-61.   DOI
10 Mirtallo, J.M., Dasta, J.F., Kleinschmidt, K.C., Varon, J., 2011. State of the art review: Intravenous fat emulsions: Current applications, safety profile, and clinical implications. Ann. Pharmacother. 44(4), 688-700.
11 Montana, M., Ducros, C., Verhaeghe, P., Terme, T., Vanelle, P., Rathelot, P., 2011. Albumin-bound paclitaxel: the benefit of this new formulation in the treatment of various cancers. J. Chemother. 23(2), 59-66.   DOI
12 Ooi, C. C., Good, N. M., Williams, D. B., Lewanowitsch, T., Cosgrove, L. J., Lockett, T. J., Head, R. J., 2011. Efficacy of butyrate analogues in HT-29 cancer cells. Clin. Exp. Pharmacol. Physiol. 37(4), 482-489.
13 Pandita, D., Ahuja, A., Lather, V., Benjamin, B., Dutta, T., Velpandian, T., Khar, R.K., 2011. Development of lipid-based nanoparticles for enhancing the oral bioavailability of Paclitaxel. AAPS Pharm. Sci. Tech. 12(2), 712-722.   DOI
14 Bates, S.E., Currier, S.J., Alvarez, M., Fojo, A.T., 1992. Modulation of P-glycoprotein phosphorylation and drug transport by sodium butyrate. Biochemistry 31(28), 6366-6372.   DOI
15 Parveen, S., Mitra, M., Krishnakumar, S., Sahoo, S.K., 2011. Enhanced antiproliferative activity of carboplatin-loaded chitosan- alginate nanoparticles in a retinoblastoma cell line. Acta Biomater. 6(8), 3120-3131.
16 Shenoy, V.S., Gude, R.P., Murthy, R.S., 2009. Paclitaxel-loaded glyceryl palmitostearate nanoparticles: in vitro release and cytotoxic activity. J. Drug Target 17(4), 304-310.   DOI
17 Agueros, M., Espuelas, S., Esparza, I., Calleja, P., Penuelas, I., Ponchel, G., Irache, J.M., 2011. Cyclodextrin-poly(anhydride) nanoparticles as new vehicles for oral drug delivery. Expert Opin. Drug Deliv. 8(6), 721-734.   DOI
18 Chavanpatil, M.D., Patil, Y., Panyam, J., 2006. Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux. Int. J. Pharm. 320(1-2), 150-156.   DOI
19 Fang, Y.P., Lin, Y.K., Su, Y.H., Fang, J.Y., 2011. Tryptanthrinloaded nanoparticles for delivery into cultured human breast cancer cells, MCF7: the effects of solid lipid/liquid lipid ratios in the inner core. Chem. Pharm. Bull. (Tokyo) 59(2), 266-271.   DOI
20 Frommel, T.O., Coon, J.S., Tsuruo, T., Roninson, I.B., 1993. Variable effects of sodium butyrate on the expression and function of the MDR1 (P-glycoprotein) gene in colon carcinoma cell lines. Int. J. Cancer 55(2), 297-302.   DOI
21 Garcion, E., Lamprecht, A., Heurtault, B., Paillard, A., Aubert- Pouessel, A., Denizot, B., Menei, P., Benoit, J.P., 2006. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol. Cancer Ther. 5(7), 1710-1722.   DOI
22 Li, R., Eun, J.S., sLee, M.K., 2011. Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch. Pharm. Res. 34(2), 331-337.   DOI
23 Hippalgaonkar, K., Majumdar, S., Kansara, V., 2011. Injectable lipid emulsions-advancements, opportunities and challenges. AAPS Pharm. Sci. Tech. 11(4), 1526-1540.