• Title/Summary/Keyword: Tribrachial Point

Search Result 3, Processing Time 0.016 seconds

Study on the Application of Various Visualization Techniques for Analysing the Structure of Tribrachial Flame (삼지화염 구조해석을 위한 다양한 가시화 기술 적용에 대한 연구)

  • Kim, Min-Kuk;Won, Sang-Hee;Chung, Suk-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.74-79
    • /
    • 2005
  • The tribrachial flame in laminar coflow jet has been investigated experimentally with unsteady propagating condition. With adopting various visualization techniques, including OH-PLIF, Rayleigh Scattering technique, it was confirmed that the location of tribrachial point is on the inclined surface of flame and the propagation speed of tribrachial flame was significantly affected by the velocity gradient.

  • PDF

Experimental Study on the Effect of Velocity gradient on Propagation speed of Ttribrachial flame in Laminar Coflow Jets (삼지화염의 전파속도에 대한 속도구배의 영향에 관한 실험적 연구)

  • Kim, M.K.;Won, S.H.;Chung, S.H.;Fujita, O.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.221-228
    • /
    • 2005
  • The tribrachial flame in laminar coflow jet has been investigated experimentally with unsteady propagating condition. In this experiment, we found that the tribrachial point has an angle of flame surface because the location of tribrachial point is not on the base point of flame but on the inclined surface of flame. This angle of Flame surface at tribrachial point are increasing when the flame is approaching to the nozzle exit. With considering this angle of flame surface, the radial velocity gradient can affect flame propagation speed by increasing flow-stretch effect. The propagation speed of tribrachial flame was calculated with including above stretch effect. The speed decreases with increasing velocity gradient due to the increment of stretch effect.

  • PDF

Temperature profile in the laminar lifted flame (부상화염 내부의 온도분포)

  • An, Hee Sung;Lee, Byeong Jun;Park, Chul-Woung;Park, Seung-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.357-358
    • /
    • 2014
  • Coherent anti-Stokes Raman spectroscopy is one of the best tools to measure temperature distributions in the flame. Since it does not disturb the flow field, it could be used to study anchoring mechanism especially in the lifted flame. However, the length of probe volume is, normally, much greater than flame thickness. This weak point was overcome with lens combination in this study. It was found out that no peculiar temperature changes was happened near tribrachial point and heat transfer to the upstream was minimal near the flame anchoring position.

  • PDF