• 제목/요약/키워드: Tribology properties

검색결과 505건 처리시간 0.022초

Nanotribological Properties of Hydrophobic Surfaces Using an Atomic Force Microscope

  • Yoon, Eui-Sung;Yang, Seung-Ho;Oh, Hyun-Jin;Han, Hung-Gu;Kong, Ho-Sung;Lee, Hae-Seong
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.55-56
    • /
    • 2002
  • Nanotribological characteristics of hydrophobic surfaces were studied experimentally using an atomic force microscope (AFM). Two kinds of thiolic self-assembled monolayers (SAM) having different spacer chains and their mixture were deposited onto gold-coated mica, where the deposited SAM resulted in the hydrophobic nature. Results showed that the mixed thiolic SAMs resulted in low adhesion and friction in nano-scale contact. It was argued that the water wetting characteristics played a central role on nano-scale adhesion and friction. Also the effect of mixing the thiolic SAMs were discussed on the basis of real area on contact and the stiffness of the SAM layers.

  • PDF

A Comparison of Friction Force Calibration in Lateral Force Microscope

  • Wang Yuli-Ang;Kim Hong-Joon;Kong Ho-Sung;Zhao Xu-Zheng;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • 제7권1호
    • /
    • pp.5-9
    • /
    • 2006
  • The main principle of two widely used methods which were proposed by Ruan and Bhushan, and by Ogletree and Carpick are introduced. Experiments were conducted using the two methods to measure friction force between AFM probe and silicon sample quantitatively. To characterize the frictional properties, the conversion factors of the two methods by which lateral electronic signal is converted into actual friction force were calculated. The experimental results show that that the conversion factors were extraordinarily different from each other. Further research should be done to identity the reasons for these differences.

Wear Debris Analysis using the Color Pattern Recognition

  • Chang, Rae-Hyuk;Grigoriev, A.Y.;Yoon, Eui-Sung;Kong, Hosung;Kang, Ki-Hong
    • KSTLE International Journal
    • /
    • 제1권1호
    • /
    • pp.34-42
    • /
    • 2000
  • A method and results of classification of four different metallic wear debris were presented by using their color features. The color image of wear debris was used far the initial data, and the color properties of the debris were specified by HSI color model. Particles were characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used fer the definition of a classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

Nano/Micro-scale friction properties of Silicon and Silicon coated with Chemical Vapor Deposited (CVD) Self-assembled monolayers

  • 윤의성;;오현진;한흥구;공호성
    • KSTLE International Journal
    • /
    • 제5권2호
    • /
    • pp.37-43
    • /
    • 2004
  • Abstract : Nano/micro-scale friction properties were investigated on Si (100) and three self-assembled monolayers (SAMs) (PFOTC, DMDM, DPDM) coated on Si-wafer by chemical vapor deposition technique. Experiments were conducted at ambient temperature(24$pm$1$circ$C) and humidity(45$pm$5%). Friction at nano-scale was measured using Atomic Force Microscopy (AFM) in the range of 0-40nN normal loads. In both Si-wafer and SAMs, friction increased linearly as a function of applied normal load. Results showed that friction was affected by the inherent adhesion in Ssi-wafer, and in the case of SAMs the physical/chemical structures had a major influence. Coefficient of friction of these test samples at the micro-scale was also energies. In order to study the effect of contact area on coefficient of friction at the micro-scale, friction was measured for Si-wafer and DPDM against Soda Lime balls (Duke Scientiffic Corporation) of different radii (0.25 mm, 0.5 mm and 1 mm) at different applied normal loads (1500, 3000 and 4800 mN). Results showed that Si-wafer had higher coefficient of friction than DPDM. Further, unlike that in the case of DPDM, friction in Si-wafer was severely influenced by its wear. SEM evidences showed that solid-solid adhesion was the wear mechanism in Si-wafer.

Tribological properties of ultra-thin diamond-like carbon coating at various humidity

  • Cuong, Pham Duc;Ahn, Hyo-Sok;Kim, Choong-Hyun;Kim, Doo-In
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.161-162
    • /
    • 2002
  • This study concerns the tribological behaviors of ultra-thin DLC coating with 3 nm thickness deposited in a mixed gas of argon + 20 % hydrogen as a function of humidity. Reciprocating wear tests employing a micro wear tester were performed under various normal loads and relative humidity in air environment. The chemical composition of the original and worn surfaces were studied by Auger electron spectroscopy (AES). It showed that the ultra-thin DLC coating exhibited low friction with enough wear stability at low normal load (0.18 N) and its tribological behavior was strongly dependent on the humidity. The sample surfaces before and after the test were examined using atomic force microscopy (AFM). Capillary force and meniscus areas were discussed in order to explain the influence of humidity on the friction force.

  • PDF

Electrorheological Properties of Chitin and Chitosan Suspensions

  • 최웅수
    • KSTLE International Journal
    • /
    • 제6권1호
    • /
    • pp.8-12
    • /
    • 2005
  • The electrorheological properties pertaining to the electrorheological (ER) bebaviour of chitin and chitosan suspensions in silicone oil were investigated. Chitosan suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field, while chitin suspension acted as a Newtonian fluid. The difference in behaior results from the difference in the conductivity of the chitin and chitosan particles, even though they have a similar chemical structure. The shear stress for the chitosan suspension exhibited a linear dependence on the volume fraction of particles and a 1.18 power of the electric field. The experimental results for the chitosan suspension correlated with the conduction model for ER response.

Electrical and Rheological Properties of Chitosan Malonate Suspension

  • Choi, Ung-su
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.14-17
    • /
    • 2003
  • The electrical and rheological properties of a chitosan malonate suspension in silicone oil was investigated by varying the electric fields, volume fractions of particles, and shear rates, respectively, The chitosan malonate susepnsion showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of multiple chains upon application of an electric field. The shear stress fur the suspension exhibited a linear dependence on the volume fraction and an electric field power of 1.88. On the basis of the experimental results, the newly synthesized chitosan malonate suspension was found to be an anhydrous ER fluid.

DLC코팅 마모면에 대한 원자력 현미경을 이용한 고찰 (An Investigation of Worn DLC Coatings Using Atomic Force Microscopy)

  • 안효석;조경만
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.138-143
    • /
    • 2002
  • Abstract - Tribofilms formed on won surface protect the DLC coating surface and decrease the fiction coefficient. However it is very difficult to evaluate their micromechanical properties due to their small thickness, inhomogeneity and discontinuity. The phase contrast images in tapping mode atomic farce microscopy allow an estimation of inhomogeneity in micromechanical properties of the sample surface. The purpose of this investigation is to demonstrate how the phase contrast images contribute to the characterization of thin tribofilms.

Electrorhelological Properties of Monodispersed Submicron-sized Hollow Polyaniline Adipate Suspension

  • 성보현;최웅수
    • KSTLE International Journal
    • /
    • 제6권1호
    • /
    • pp.28-32
    • /
    • 2005
  • The electrorheoloRical (ER) fluids are composed of a colloidal dispersion of polarizable particles in insulating oil, and it's the rheological property changes by the applied electric field. These changed are reversible and occur fast within a fewmilliseconds. The ER properties of the ER fluid such as increment of viscosity and yield stress come from the particle chain structure induced by electric fleld. When formulating the ER fluid for a speciflc application, some requirement must besatisfled, which are high yield stress under electric field, rapid response, and dispersion stability. While this characteristic makes valuable ER fluids in valious industrial applications, their lung term and quiescent application has been limited because ofproblems with particle sedimentation. In an effort to overcome sedimentation problem of ER fluids, the anhydrous ER materials of monodispersed hollow polyaniline (PANI) and adipate derivative respectively with submicron-sized suspension providing wide operating temperature range and other advantage were synthesized in a four-step procedure. The ER fluidswere characterized by FT-lR, TGA, DLS, SEM, and TEM. Stability of the suspensions was examined by an UV spectroscopy.The rheological and electrical properties of the suspension were investigated Couette-type rheometer with a high voltagegenerator, current density, and conductivity. And the behavior of ER suspensions was observed by a video camera attached toan optical microscope under 3kV/mm. The suspensions showed good ER properties, durability, and particle dispersion.

연마가공에서의 접촉계면 특성과 재료제거율간의 관계에 대한 연구 (On the Relationship between Material Removal and Interfacial Properties at Particulate Abrasive Machining Process)

  • 성인하
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.404-408
    • /
    • 2009
  • 본 연구에서는 마이크로/나노입자를 이용한 연마가공 공정에서의 입자-표면간 접촉상황에서 접촉계면의 기계적 성질과 재료제거율간의 관계를 실험적으로 고찰하였다. 연마가공 공정에서의 입자-평면간 접촉을 모사하기 위하여 팁 대신 실리카 입자를 부착한 콜로이드 프로브를 이용한 원자현미경 실험을 통하여 마찰력과 강성을 실험적으로 측정하였다. 실험결과와 이론적 접촉해석으로부터, 마찰계수는 횡방향 접촉강성에 따라 대체적으로 증가하고 재료제거율은 실리카 입자와 Cu, PolySi, Ni과 같은 다양한 재료표면간 접촉에서의 마찰계수들과 지수함수적인 비례관계를 가지고 있음을 규명하였다.