• Title/Summary/Keyword: Tribology behavior

Search Result 461, Processing Time 0.025 seconds

Sliding Friction and Wear Behavior of C/C Composites Against 40 Cr Steel

  • Ge, Yicheng;Yi, Maozhong;Xu, Huijuan;Peng, Ke;Yang, Lin
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.97-100
    • /
    • 2009
  • In this work, effects of carbon matrix on sliding friction and wear behavior of four kinds of C/C have been investigated against 40 Cr steel ring mate. Composite A with rough lamination carbon matrix (RL) shows the highest volume loss and coefficient of friction, while composite D with smooth lamination/resin carbon matrix (SL/RC) shows the lowest volume loss. The worn surface of composite A appears smooth, whereas that of composite C with smooth lamination carbon (SL) appears rough. The worn surface of composite D appears smooth under low load but rough under high load. Atomic force microscope images show that the size of wear particles on the worn surface is also dependent on the carbon matrix.

Design Approach and Structural Analysis for Development of a Micro-Wear Tester (마이크로 마모 시험기 개발을 위한 설계 방안 및 구조 해석)

  • Yoo, Shin-Sung;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • The tribological behavior of microsystems needs to be clearly understood in order to improve the reliability of precision components. For example, friction and wear phenomena pose serious problems in MEMS applications. As a first step to investigate the tribological behavior of such systems, an appropriate testing system must be acquired. In this work, a micro-wear tester based MEMS platform was designed. The main concern was to achieve a desirable range of horizontal displacement for the specimen holder and also to apply a normal force in the tens of ${\mu}N$ range. The structural analysis of the micro-wear tester showed that the proposed design satisfied these requirements while maintaining the structural integrity.

Effect of Reduced Ambient Pressure on the Tribological Behavior of Head/Disk Interface (대기압 저감에 따른 헤드/디스크 인터페이스의 트라이볼로지 특성 분석)

  • 한동국;박준우;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.303-309
    • /
    • 1999
  • Optimum tribological performance of the head/disk system is critical in maintaining reliable data processing in a hard disk drive. Particularly, as the flying height of the slider continues to decrease with increasing recording density, frictional interaction between the slider and the disk need to be better understood. In this work the effect of reduced ambient pressure on the tribological behavior of the head/disk interface is presented. It is found that surface damage of the components can be accelerated by reducing the ambient pressure. This method may be utilized to assess slider/disk compatibility of newly developed systems in short time.

  • PDF

An Analytical Study on the Dynamics of Center Pivot Rocker Arm Type Valve Train System with Roller (롤러를 장착한 로커암 타입 밸브트레인 시스템의 동적 거동 해석)

  • 한동철;신흥주;조명래
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.318-322
    • /
    • 1999
  • An analytical study about dynamic behavior of center pivot rocker arm type valve train system equipped with roller of diesel engine is developed. At first, a mathematical model for the dynamic analysis has been set up using the lumped parameter method. In that model, valve spring is divided as some mass elemehts so as to simulate spring surging, Then, how the design parameters, such as valve mass, rocker arm inertia, valve spring stiffness, and initial load on valve spring, affect valve dynamic behavior especially in the valve close area is scrutinized.

  • PDF

Effect of environment on the tribological behavior of Si-incorporated diamond-like carbon films (실리콘이 첨가된 다이아몬드상 카본 필름의 트라이볼로지적 특성에 미치는 환경변화의 영향)

  • 양승호;공호성;이광렬;박세준;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.42-48
    • /
    • 1999
  • An experimental study was performed to discover the effect of environment on the tribological behavior of Si-incorporated diamond-like carbon(Si-DLC) film slid on a steel ball. The films were deposited on Si(100) wafers from radio-frequency glow discharge of mixtures of benzene and dilute silane gases. Experiments using a ball-on-disk test-rig was performed under vacuum, dry air and ambient air conditions. It was observed that coefficient of friction was decreased as the environmental condition changes from vacuum, to dry air. It was also observed that the coefficient of friction decreased with increasing silicon concentration in the film. Chemical analyses of debris suggested that the low and stable friction coefficient is closely related to the silicon rich oxide debris and the rolling action.

  • PDF

Prediction of Frictional behavior according to geometrical contact condition using FFT-based analysis (FFT해석을 이용한 기하학적 접촉조건에 따른 마찰거동예측)

  • 성인하;이형석;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.13-18
    • /
    • 2001
  • In this paper, FFT(Fast Fourier Transform) analysis of friction was suggested as a method to interpret the contact conditions. Micro-grooves with various dimensions were fabricated on the silicon surface to investigate the frictional behavior with respect to the change in geometrical contact condition. Frictional forces between micro-grooved surfaces and spheres modeled as surface asperities were measured using a micro-tribotester which was built inside a SEM(Scanning Electron Microscope). The experimental results show that the relative dimensions and distributions of contact asperities between two surfaces can be predicted by the power spectrum and the main frequency in FFT-based analysis of friction coefficient. Also, it was shown that the friction coefficient for multi-asperities was the result of the superposition of that for each asperity.

  • PDF

The effect of impact directions and angels on erosion behavior of undirectionally oriented sillicon nitride (충돌 방향과 각도가 일방적으로 배향된 질화규소의 Erosion 거동에 미치는 영향)

  • Cho, Chang-Hee;Choi, Hyun-Joo;Lim, Dae-Soon;Jung, Jung-Sik;Park, Dong-Soo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.88-95
    • /
    • 2001
  • Silicon nitride based ceramics reinforced with 3wt% Si$_{3}$N$_{4}$ whisker was prepared by tape casting to investigate the effect of microstructure on erosion behaviors. Hardness and fracture toughness were measured with prepared specimens. A gas blast type erosion tester was used to examine the erosion behavior of the specimens with different impact directions and angles. The erosion rate increases with increasing impact angle. Erosion rate of the silicon nitride ceramics also depends on the grain orientations, The erosion rate was lowered when impaction direction was parallel to the grain orientation This result was explained by the crack deflection and bridging due to the grain orientation.

  • PDF

Tribological Behavior of Electro-pressure Sintered Cobalt-Iron, Cobalt-Nickel, and Cobalt-Iron-Nickel Compacts

  • Kim, Yong-Suk;Kwon, Yong-Jin;Kim, Tai-Woong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1124-1125
    • /
    • 2006
  • Dry sliding wear behavior of electro-pressure sintered Co-Fe, Co-Ni and Co-Fe-Ni compacts was investigated. Pin-on-disk wear tests were performed on the sintered compacts disk specimens against alumina $(Al_2O_3)$ and silica $(SiO_2)$ ball counterparts at various loads ranging from 3N to 12N. Two sliding speeds of 0.1m/sec and 0.2m/sec and a fixed sliding distance of 1,000m were employed. Worn surfaces and cross sections of them were examined by a scanning electron microscopy, and wear mechanism of the compacts was investigated. Effects of the oxide layer that was formed on wearing surface of the compacts on the wear were also studied.

  • PDF

Investigation of the Frictional Behavior with respect to Surface Geometry and Surface Material at Nanoscale (나노스케일에서의 표면형상 및 재료변화에 대한 마찰거동 고찰)

  • 성인하;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.36-41
    • /
    • 2001
  • In this work, the changes in the friction force(lateral force) with respect to nanoscale geometric variation were investigated using an Atomic Force Microscope and a Lateral Force Microscope. It could be concluded that the changes in the friction force correspond well to the slope change rather than the surface slope itself, and that the influence of slope change on the frictional behavior is dependent on the magnitude of the slope and the torsional stiffness of the cantilever. Also, the nominal friction force is found to be more significantly affected by the material and the physical-chemical state of the surface rather than by nanoscale geometric steps. However, the change in nanoscale geometric details of the surface cause instantaneous change and slight variation in the friction signal.

  • PDF

Effect of Silver Particle Introduction on Rolling Friction (구름거동에 미치는 은 입자 투여의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.105-113
    • /
    • 2001
  • The effect of silver particle introduction on the rolling friction of AISI 52100 steel pairs has been investigated. Experiments were performed in dry conditions using a thrust bearing-type rolling test rig at a load range of 12 - 960 N and a sliding velocity range of 8 - 785 mm/sec with pure(99.99%) silver particles. Results showed that the introduced silver particles formed transfer layer, which protected virgin bearing surfaces and resulted in low rolling friction. By changing the quantity of silver particles, transitions in the rolling friction wear found. Results also showed that the variations in normal load and rolling speed also affected the rolling friction behavior. Analyses using SEM and EPMA showed that tile formation of transfer layer was mainly governed by the silver particle quantity, normal load and rolling speed, and this resulted in the different behavior of rolling friction. In this study, it was found that the low and stable rolling friction was resulted from the shakedown phenomena occurred at the silver transfer layer.

  • PDF