• Title/Summary/Keyword: Triaxial stress

Search Result 490, Processing Time 0.034 seconds

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Yoo, Min-Taek;Yang, Eui-Kyu;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models consisting of a single-pile and a $4{\times}2$-pile group were tested twice; first using Jumoonjin sand, and second using Australian Fine sand, which has a smaller particle size. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

  • PDF

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part I : Modeling (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part I : 모델링)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.484-495
    • /
    • 2020
  • To numerically simulate the advance of EPB TBM, various type of numerical analysis methods have been adopted including discrete element method (DEM), finite element method (FEM), and finite difference method (FDM). In this paper, an EPB TBM driving model was proposed by using coupled DEM-FDM. In the numerical model, DEM was applied in the TBM excavation area, and contact properties of particles were calibrated by a series of triaxial tests. Since the ground around the excavation area was coupled with FDM, the horizontal stress considering the coefficient of earth pressure at rest could be applied. Also, the number of required particles was reduced and the efficiency of the analysis was increased. The proposed model can control the advance rate and rotational speed of the cutter head and screw conveyor, and derive the torque, thrust force, chamber pressure, and discharging during TBM tunnelling.

Static Behavior of Gravelly Soil with State Parameter (상태정수에 따른 자갈질 흙의 정적거동)

  • Heo, Seungbeom;Yoon, Yeowon;Kim, Woosoon;Kim, Jaeyoun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.5-14
    • /
    • 2010
  • Recent researches on the behavior of gravelly soils have been focused mainly on the relative density or on the gravel content. And some researchers presented the liquefaction behavior based on the relative density whereas others based on the gravel content of gravelly soil. However the relative densities vary with gravel content and relative density is not enough to fully express the behavior of gravelly soils. Therefore in this research state parameter which considers void ratio and effective confining pressure is introduced and Steady State Line(SSL) of gravelly soils for various gravel content are determined by undrained triaxial tests in order to express the behavior of gravelly soils. From the research the position of SSL moved downward with gravel content. And the same density of soil showed dense sand behavior or loose sand behavior depending upon the confining pressure. Especially relative density 80% of gravelly soil showed loose sand behavior under high confining pressure. However the gravelly soils with similar state parameters showed similar stress behaviors. It can bee seen that state parameter is useful tool to evaluate undrained behavior of gravelly soils. Also state parameter and undrained strength showed good correlations.

Cyclic Shear Characteristics of Nakdong River Sand Containing Fines with Varying Plasticity (낙동강 모래에 포함된 세립분의 소성지수에 따른 반복전단 특성)

  • Park, Sung-Sik;Kim, Young-Su;Kim, Sung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3C
    • /
    • pp.93-102
    • /
    • 2011
  • Most experimental studies on soil liquefaction are related to clean sands. However, soils in the field or reclaimed grounds commonly contain some amounts of silt and clay rather than clean sand only. Many researchers investigated the effect of fine contents on liquefaction resistance and mainly used non-plastic fines such as silts. In this study, 10% of plastic fines with various plasticity index (PI) such as 8, 18, 50, and 377 were mixed with wet Nakdong River sand and then loose, medium, and dense specimens were prepared by undercompaction method. A series of undrained cyclic triaxial tests were carried out by applying three different cyclic stress ratios. As a result, the liquefaction resistance tended to decrease as a PI of fines in the specimens with equal fine content increased. On the other hand, the difference between loose specimens with low and high plasticity fines was not clearly observed in terms of liquefaction resistance. However, in the case of dense specimens, liquefaction resistance decreased up to 40% as a plasticity of fines increased.

Scale Effects of Initial Model and Material on 3-Dimensional Distinct Element Simulation (3차원 개별요소해석 시의 초기 모델 및 재료 스케일 영향)

  • Jeon, Jesung;Shin, Donghoon;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.57-65
    • /
    • 2011
  • Numerical simulations by three-dimensional Particle Flow Code($PFC^{3D}$, Itasca) considering distinct element method (DEM) were carried out for prediction of triaxial compression test with sand material. The effect of scale conditions for numerical model and distinct material on final prediction results was analyzed by numerical models under various scale conditions, and following observations were made from the numerical experiments. It is very useful to model the initial material condition without any porosity conversion from 2-D to 3-D DEM. Numerical experiments have shown that in all cases considered, 3D distinct element modeling could provide good agreement on stress-strain behavior, volume change and strength properties with laboratory testing results. It was important thing to assess reasonable scale ratio of numerical model and distinct elements for saving calculation time and securing calculation efficiency under condition with accuracy and appropriateness as numerical laboratory. As results of DEM simulations under various scale conditions, most of results show that shear strength properties as cohesion and internal friction angle are similar in condition of $D_{mod}/D_{gmax}$ < 10. It shows that 3-D distinct element method could be used as efficient tool to assess strength properties by numerical laboratory technique.

A Study on Estimating Shear Strength of Continuum Rock Slope (연속체 암반비탈면의 강도정수 산정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung;Hur, Ik;Lee, Jun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.5-19
    • /
    • 2019
  • Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.

A Study on the Shear Characteristics of the Decomposed Granite Soils Using Direct Shear Test (직접전단시험(直接剪斷試驗)에 의한 화강토(花崗土)의 전단특성(剪斷特性)에 관(關)한 연구(硏究))

  • Lee, Dal Won;Kang, Yea Mook;Cho, Seong Seup
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.227-242
    • /
    • 1986
  • This paper describes the observed behavior in the direct shear test on decomposed granite soil having the complicate engineering properties at various different levels of factors. The objectives of this study were to investigate the characteristics of the decomposed granite soil under controlled various moisture content, dry density, strain rate and soaking which give influence to the shear strength. The results were summarized as follows; 1. The shear strength was decreased remarkably with the increasing of moisture contents of A and B soil were 5-10% and 15-20% respectively. 2. Cohesion and angle of internal friction were decreased with the increasing of moisture content and increased with the increasing of dry density. 3. The shear strength was increased with the increasing of normal stress and volume change was decreased on the whole. The shear strength was generally increased with the increasing of the strain rate. 4. As dry density increases, A-soil shows the progressive failure and the decrease of volume change while B-soil shows the initial failure and the increase of volume change. 5. The relationships between the soaked and unsoaked specimens were as follows ; ${\tau}_f=0.1009+1.026{{\tau}_f}^*$ (A-soil), ${\tau}_f=0.1586+0.8005{{\tau}_f}^*$ (B-soil) 6. Angle of internal friction of the direct shear test shows larger value than that of the triaxial compression test. All effective stress path was nearly similar.

  • PDF

Static and dynamic elastic properties of the Iksan Jurassic Granite, Korea (익산 쥬라기 화강암의 정 및 동탄성학적 특성)

  • Kang, Dong-Hyo;Jung, Tae-Jong;Lee, Jung-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.99-112
    • /
    • 2000
  • The Iksan Jurassic Granite shows relatively less fractures and homogeneous rock fabrics, and is one of the most popular stone materials for architectures and sculptures. Almost mutually perpendicular rift, grain, and halfway in the Iksan Jurassic Granite are well known to quarrymen based on its splitting directions, and therefore it should exhibit orthorhombic symmetry. Theoretically, there are 9 independent elastic stiffness coefficients $(C_{1111},\;C_{2222},\;C_{3333},\;C_{2323},\;C_{1313},\;C_{1212},\;C_{1122},\;C_{2233},\;and\;C_{1133})$ for orthorhombic anisotropy. In order to characterize the static and dynamic elastic properties of the Iksan Jurassic Granite, triaxial strains under uniaxial compressive stresses and ultrasonic velocities of elastic waves in three different polarizations are measured. Both experiments are carried out with six directional core samples from massive rock body. Using the results of experiments and the densities measured independently, the static and dynamic elastic coefficients are computed by simple mathematical manipulation derived from the governing equations for general anisotropic media. The static elastic coefficients increase ar uniaxial compressive stress rises. Among those, the static elastic coefficients at uniaxial compressive stress of a 24.5 MPa appear to be similar to the dynamic elastic coefficients under ambient condition. Although some deviations are observed, the preferred orientations of microcracks appear to be parallel or subparallel to the rift, the grain, and the hardway from microscopic observation of thin sections. This indicates that the preferred orientations of microcracks cause the elastic anisotropy of the Iksan Jurassic Granite. The results are to be applied to the effective use of the Iksan Jurassic Granite as stone materials, and can be used for the non-destructive safety test.

  • PDF

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Han, Jin-Tae;Yoo, Min-Taek;Yang, Eui-Kyu;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.49-58
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models were tested twice: first using Jumoonjin sand, and second using Australian Fine sand. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.