• Title/Summary/Keyword: Triangular plates

Search Result 55, Processing Time 0.02 seconds

Design and Analysis of Multi Beam Space Optical Mixer

  • Lian Guan;Zheng Yang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.56-64
    • /
    • 2024
  • In response to the current situation where general methods cannot effectively compensate for the phase delay of ordinary optical mixers, a multi-layer spatial beam-splitting optical mixer is designed using total reflection triangular prisms and polarization beam splittings. The phase delay is generated by the wave plate, and the mixer can use the existing parallel plates in the structure to individually compensate for the phase of the four output beams. A mixer model is established based on the structure, and the influence of the position and orientation of the optical components on the phase delay is analyzed. The feasibility of the phase compensation method is simulated and analyzed. The results show that the mixer can effectively compensate for the four outputs of the optical mixer over a wide range. The mixer has a compact structure, good performance, and significant advantages in phase error control, production, and tuning, making it suitable for free-space coherent optical communication systems.

Development of triangular flat-shell element using a new thin-thick plate bending element based on semiLoof constrains

  • Chen, Yong-Liang;Cen, Song;Yao, Zhen-Han;Long, Yu-Qiu;Long, Zhi-Fei
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.83-114
    • /
    • 2003
  • A new simple 3-node triangular flat-shell element with standard nodal DOF (6 DOF per node) is proposed for the linear and geometrically nonlinear analysis of very thin to thick plate and shell structures. The formulation of element GT9 (Long and Xu 1994), a generalized conforming membrane element with rigid rotational freedoms, is employed as the membrane component of the new shell element. Both one-point reduced integration scheme and a corresponding stabilization matrix are adopted for avoiding membrane locking and hourglass phenomenon. The bending component of the new element comes from a new generalized conforming Kirchhoff-Mindlin plate element TSL-T9, which is derived in this paper based on semiLoof constrains and rational shear interpolation. Thus the convergence can be guaranteed and no shear locking will happen. Furthermore, a simple hybrid procedure is suggested to improve the stress solutions, and the Updated Lagrangian formulae are also established for the geometrically nonlinear problems. Numerical results with solutions, which are solved by some other recent element models and the models in the commercial finite element software ABAQUS, are presented. They show that the proposed element, denoted as GMST18, exhibits excellent and better performance for the analysis of thin-think plates and shells in both linear and geometrically nonlinear problems.

Behaviors of Laminated Composite Folded Structures According to Ratio of Folded Length (곡절 길이비에 따른 복합적층 절판 구조물의 거동)

  • Yoo Yong-Min;Yhim Sung-Soon;Chang Suk-Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.223-231
    • /
    • 2006
  • This study deals with behavior characteristics of laminated composite folded structures according to ratio of folded length based on a higher-order shear deformation theory. Well-known mixed finite element method using Lagrangian and Hermite shape interpolation functions is a little complex and have some difficulties applying to a triangular element. However, a higher-order shear deformation theory using only Lagrangian shape interpolation functions avoids those problems. In this paper, a drilling degree of freedom is appended for more accurate analysis and computational simplicity of folded plates. There are ten degrees of freedom per node, and four nodes per element. Journal on folded plates for effects of length variations is not expressed. Many results in this study are carried out according to ratio of folded length. The rational design is possible through analyses of complex and unpredictable laminated composite folded structures.

A Prediction Model for Low Cycle and High Cycle Fatigue Lives of Pre-strained Fe-18Mn TWIP Steel (Fe-18Mn TWIP강의 Pre-strain에 따른 저주기 및 고주기 피로 수명 예측 모델)

  • Kim, Y.W.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • The influence of pre-strain on low cycle fatigue behavior of Fe-18Mn-0.05Al-0.6C TWIP steel was studied by conducting axial strain-controlled tests. As-received plates were deformed by rolling with reduction ratios of 10 and 30%, respectively. A triangular waveform with a constant frequency of 1 Hz was employed for low cycle fatigue test at the total strain amplitudes in the range of ${\pm}0.4\;{\sim}\;{\pm}0.6$ pct. The results showed that low-cycle fatigue life was strongly dependent on the amount of pre-strain as well as the strain amplitude. Increasing the amount of prestrain, the number of reversals to failure was significantly decreased at high strain amplitudes, but the effect was negligible at low strain amplitudes. A new model for predicting fatigue life of pre-strained body has been suggested by adding ${\Delta}E_{pre-strain}$ to the energy-based fatigue damage parameter. Also, high-cycle fatigue lives predicted using the low-cycle fatigue data well agreed with the experimental ones.

Electro-mechanical Properties of Piezoelectric Ceramic Bimorphs (압전 세라믹 바이모프의 전기기계적 특성)

  • Lee, Yong-Kuk;Lee, Hae-Ryong;Kim, Chang-Kyo;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1416-1418
    • /
    • 1994
  • Expressions for the displacement of a bimorph, one end fixed and the other free, has been introduced when sinusoidal inputs were applied to the ceramic plates on a thin metal plate. Maximum displacements at the free end and strains at the position of strain gage attached were measured when various wave forms, voltages, and frequencies were applied to the bimorph whose length is 6.6[cm], width 2.5[cm], and thickness 0.0365[cm]. Under the constant voltage ( $70[V_{peak}]$ ), the strains and the displacements at the free end were larger than the case of the sinusoidal input when the square wave was applied and were smaller when triangular wave. It was shown that the displacements at the free end and the strains of the gage position were increased as the applied voltage in the range of $30-90[V_{peak}]$ and effective length were increased. And it was also found that the resonant frequency of a bimorph was decreased as its effective length was increased, and that the displacements and the strains were maximum at the resonant frequency.

  • PDF