• Title/Summary/Keyword: Triangular Error Distribution

Search Result 7, Processing Time 0.019 seconds

Analysis and Probability of Overestimation by an Imperfect Inspector with Errors of Triangular Distributions (삼각 과오 분포를 가진 불완전한 검사원의 과대 추정 확률과 분석)

  • Yang, Moon Hee;Cho, Jae Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.117-132
    • /
    • 2018
  • There always exist nonzero inspection errors whether inspectors are humans or automatic inspection machines. Inspection errors can be categorized by two types, type I error and type II error, and they can be regarded as either a constant or a random variable. Under the assumption that two types of random inspection errors are distributed with the "uniform" distribution on a half-open interval starting from zero, it was proved that inspectors overestimate any given fraction defective with the probability more than 50%, if and only if the given fraction defective is smaller than a critical value, which depends upon only the ratio of a type II error over a type I error. In addition, it was also proved that the probability of overestimation approaches one hundred percent as a given fraction defective approaches zero. If these critical phenomena hold true for any error distribution, then it might have great economic impact on commercial inspection plans due to the unfair overestimation and the recent trend of decreasing fraction defectives in industry. In this paper, we deal with the same overestimation problem, but assume a "symmetrical triangular" distribution expecting better results since our triangular distribution is closer to a normal distribution than the uniform distribution. It turns out that the overestimation phenomenon still holds true even for the triangular error distribution.

Estimation for the Triangular Distribution under Progressive Type-II Censoring

  • Kang, Suk-Bok;Han, Jun-Tae;Jung, Won-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.765-774
    • /
    • 2008
  • In this paper, we derive the approximate maximum likelihood estimators(AMLEs) and maximum likelihood estimator of the scale parameter in a triangular distribution based on progressive Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation for various progressive censoring schemes.

THE BEHAVIOUR OF PROBABILISTIC ERROR BOUNDS IN FLOATING POINT ALGEBRAIC PROCESSES

  • M.Mitrouli;C.Koukouvinos
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.211-222
    • /
    • 1997
  • In this paper we present a probabilistic approach for the estimation of realistic error bounds appearing in the execution of basic algebraic floating point operations. Experimental results are carried out for the extended product the extended sum the inner product of random normalised numbers the product of random normalised ma-trices and the solution of lower triangular systems The ordinary and probabilistic bounds are calculated for all the above processes and gen-erally in all the executed examples the probabilistic bounds are much more realistic.

A study on the temperature distribution for various base materials due to the constant heat input (가열된 열가소성 재료의 금형내부에서의 온도분포에 관한 연구)

  • 리우환;권형정;양희찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.37-47
    • /
    • 1989
  • A calcuation method of the temperature distribution for various shape due to the constant heat input is studied in this paper. So far, the method of try and error is carring out on the mould design. The reason of adopting this method is due to hardly estimate the cooling system in the mould base. As above description, the most part of the mould is supposed as a rectangular, cylinderical and triangular shape and made a governing equation of heat transfer and solved it to numerical analysis by finite-difference method(central- difference). After that in order to confirm that the temperatures are measured on different shape specimens from the part of frequent usage of which are carbon, crome-molybden, tool and stainless steel those were compared with the results of calculations presented in this paper.

  • PDF

Estimating Pollutant Loading Using Remote Sensing and GIS-AGNPS model (RS와 GIS-AGNPS 모형을 이용한 소유역에서의 비점원오염부하량 추정)

  • 강문성;박승우;전종안
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.102-114
    • /
    • 2003
  • The objectives of the paper are to evaluate cell based pollutant loadings for different storm events, to monitor the hydrology and water quality of the Baran HP#6 watershed, and to validate AGNPS with the field data. Simplification was made to AGNPS in estimating storm erosivity factors from a triangular rainfall distribution. GIS-AGNPS interface model consists of three subsystems; the input data processor based on a geographic information system. the models. and the post processor Land use patten at the tested watershed was classified from the Landsat TM data using the artificial neural network model that adopts an error back propagation algorithm. AGNPS model parameters were obtained from the GIS databases, and additional parameters calibrated with field data. It was then tested with ungauged conditions. The simulated runoff was reasonably in good agreement as compared with the observed data. And simulated water quality parameters appear to be reasonably comparable to the field data.

Development of 2D Tight-fitting Pattern from 3D Scan Data (3D 스캔 데이터를 활용한 밀착 패턴원형 개발)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.1 s.149
    • /
    • pp.157-166
    • /
    • 2006
  • The human body, which is composed of concave and convex curvatures, makes it difficult to transfer into 2D patterns directly from 3D data. In previous studies. Jeong, et al.(2004) suggested the block method was fester and easier when dealing with the triangular patches of male's upper dress form. Although the block method is useful to make a pattern, the information(area, length, etc.) from a 2D pattern would be different depending on the direction of the block method. As a result horizontal and diagonal block methods were suggested as optimal methods for 2D tight-fitting patterns. These block methods were closer to the original area of the 3D scan data than the vertical block method. The total area of the 2D pattern obtained by the horizontal and diagonal block methods showed little differences. In case of the horizontal and diagonal block methods, the total error of the 2D pattern area ranged from $0.01\%\~0.25\%$. In comparing the length of the 2D pattern with that of the 3D scan data, the obtained 2D pattern was $0.1\~0.2cm$ shorter than the 3D scan data, which was within the acceptable range of errors in making clothes. 3D space distribution images between the body surface and the experimental clothing were also measured and $3\%$ enlargement of the original pattern was verified as the adequate adjustment.

Optimization of Material Properties for Coherent Behavior across Multi-resolution Cloth Models

  • Sung, Nak-Jun;Transue, Shane;Kim, Minsang;Choi, Yoo-Joo;Choi, Min-Hyung;Hong, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4072-4089
    • /
    • 2018
  • This paper introduces a scheme for optimizing the material properties of mass-spring systems of different resolutions to provide coherent behavior for reduced level-of-detail in MSS(Mass-Spring System) meshes. The global optimal material coefficients are derived to match the behavior of provided reference mesh. The proposed method also gives us insight into levels of reduction that we can achieve in the systematic behavioral coherency among the different resolution of MSS meshes. We obtain visually acceptable coherent behaviors for cloth models based on our proposed error metric and identify that this method can significantly reduce the resolution levels of simulated objects. In addition, we have confirmed coherent behaviors with different resolutions through various experimental validation tests. We analyzed spring force estimations through triangular Barycentric coordinates based from the reference MSS that uses a Gaussian kernel based distribution. Experimental results show that the displacement difference ratio of the node positions is less than 10% even if the number of nodes of $MSS^{sim}$ decreases by more than 50% compared with $MSS^{ref}$. Therefore, we believe that it can be applied to various fields that are requiring the real-time simulation technology such as VR, AR, surgical simulation, mobile game, and numerous other application domains.