• Title/Summary/Keyword: Trial Mold

Search Result 38, Processing Time 0.026 seconds

Bacillus subtilis S1-0210 as a Biocontrol Agent against Botrytis cinerea in Strawberries

  • Hang, Nguyen Thi Thu;Oh, Soon-Ok;Kim, Gyoung-Hee;Hur, Jae-Seoun;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-63
    • /
    • 2005
  • Bacillus subtilis S1-0210 was selected as a biological agent against Botrytis cinerea in strawberry. The isolate inhibited mycelial growth of B. cinerea in vitro tests. A wettable powder formulation of B. subtilis S1-0210 significantly reduced infection rates with lower than 5%, compared with higher than 70% of infection rates in untreated control. The formulation showed 85 to 89% control efficacies of gray mold incidences on fruits of strawberry in pots. Pre-treatment of the agent was more effective in controlling gray mold on fruits and leaves than post-treatment at the early stage of disease development. The formulation also showed 70% control efficacy of gray mold incidence on fruits of strawberry in a field trial. The results indicate that B. subtilis S1-0210 in the wettable powder formulation may be a potential biocontrol agent to control gray mold on strawberry.

Development of Asymmetric Plastic Fan Product (비대칭형 플라스틱 팬 제품 개발)

  • Yon, Kyu-Hyun;Kim, Hyung-Kook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • The analysis of injection molding process by CAE is widely used in development of plastic products. That comes from the fact that CAE analysis can reduce trial and error based on optimized design. On this study, by use of MOLDFLOW, the causes of product defects were found and solved by trade-off study. CAE analysis includes Flow-Cool-Warpage Analyses and finally a new mold-die design with better product quality was suggested. On injection molding of round-shaped plastic fan, new mold-die system with 4-tunnel gates located on the edge of a fan disc shows better quality rather than pin-point gate located on the center of a disc. That was effective in terms of flow mark removal and flatness improvement of the product.

  • PDF

A Study on Intelligent Generator of Optimal Process Conditions to Avoid Short Shot (미성형 방지를 위한 최적조건 생성 시스템 연구)

  • 강성남;허용정;조현찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.33-37
    • /
    • 2002
  • A short shot is a molded part that is incomplete because insufficient material was injected into the mold. Remedial actions to control the process conditions can be taken by the injection molding experts based on their knowledge and experience. However, it is very difficult for the non-experts to avoid short shot by finding the proper process conditions such as mold temperature, melt temperature and filling time. In this paper, an intelligent generator of the optimal process conditions based upon fuzzy logic algorithm is proposed so that trial and error can be minimized and the non-experts as well as the experts can also find the optimal process conditions.

A Study on Intelligent Generator of Optimal Process Conditions to Avoid Short Shot (사출성형용 지능형 미성형 방지 최적조건 생성 시스템 연구)

  • 강성남;허용정;조현찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.402-405
    • /
    • 2001
  • A short shot is a molded part that is incomplete because insufficient material was injected into the mold. Remedial actions to control the process conditions can be taken by the injection molding experts based on their knowledge and experience. However, it is very difficult for the non-experts to avoid short shot by finding the proper process conditions such as mold temperature, melt temperature and filling time. In this paper, an intelligent generator of the optimal process conditions based upon fuzzy logic algorithm is proposed so that trial and error can be minimized and the non-experts as well as the experts can also find the optimal process conditions.

  • PDF

Optimization of Repulping Process of Unsorted ONP for Pulp Mold (II) - Pilot trial -

  • Cho, Byoung-Uk;Ryu, Jeong-Yong;Fabry, Benjamin;Song, Bong-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.39-44
    • /
    • 2007
  • In order to utilize unsorted ONP, which contains leaflets (printed coated papers), as a raw material to produce pulp mold, optimum conditions for repulping were investigated with the pilot Helico pulper at Centre Technique du Paper (CTP), France. Two major process factors were focused: repulping concentration and rotor speed. Repulping at a higher concentration showed more rapid defibering kinetics. Increasing the rotational speed of rotor at the optimum repulping concentration accelerated the defibering kinetics while it also led to higher fines generation and faster decrease in drainage property of the produced pulp. Hence, an alternative way was suggested: starting repulping at a conventional rotor speed and then accelerating the rotor speed for the last minute(s) of repulping.

A Study on Intelligent Generator of Mold Temperature Using Fuzzy Algorithm to Prevent Short Shot (퍼지 알고리듬을 이용한 금형 온도 지적생성 시스템에 관한 연구)

  • 강성남;허용정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.53-57
    • /
    • 2001
  • A short shot is an incomplete molded part caused by insufficient material injection into the mold. Remedial actions to control the process conditions can be taken by injection molding experts based on their knowledge and experiences. However, it is very difficult for non-experts to avoid short shot by finding the proper process conditions such as mold temperature, melt temperature and filling time. In this paper, an intelligent generator of optimal process conditions based upon fully logic algorithm is proposed so that trial and error can be minimized and non-experts an well at experts can also find the optimal process conditions.

  • PDF

Study on Heterojunction Injection Pulley Fabrication for Development of a High-Strength and Light-Weight Industrial Pulley (고강도 경량화 산업용 풀리 개발을 위한 이종접합 사출풀리 제작에 관한 연구)

  • You, Kwan-jong;Bae, Sung-ryong;Kim, Jae-yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.76-81
    • /
    • 2019
  • In the mold-manufacturing field, various methods of advanced production technology are being used in the production of industrial-grade gear pulleys. Among the current methods are injection molding, hoop molding, insight molding, two-material molding, compound-mold molding, as well as engineering plastic mold. Currently, casting pulleys are inexpensive because they are produced in small quantities. However, they produce complications during the manufacturing process, are very unreasonable for mass production, and are disadvantageous in cost competitiveness. Pulleys are divided into hundreds of kinds and thousands of kinds, so the production methods vary. As these pulleys are made of a single material by a casting and welding method, they are not manufactured using injection molds consisting of different materials. In this research, pulleys, shafts, and reinforced plastic materials were incorporated using ANSYS software, and a low-cost, lightweight technology was applied for trial production with optimum design and extrusion technology.

Profile Ring Rolling Manufacturing Technology of Alloy 718 (초내열합금 링제품의 형상링 압연 제조 기술)

  • Kim, T.O.;Kim, K.J.;Kim, N.Y.;Lee, J.M.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.425-428
    • /
    • 2009
  • Aerospace engine application needs to stand high temperature and pressure. Because of its mechanical properties such as high strength at high temperature, Alloy 718 is used aerospace engine application about 80%. But alloy 718's mechanical properties cause some problem to manufacturing profile ring like damage of material and mold. In this study, alloy 718's mechanical properties investigated for knowing its formability and using FE-Simulation for designing profile ring roll process and mold shape. Profile ring rolling processing is designed with "Initial material$\rightarrow$Blank$\rightarrow$Linear Ring$\rightarrow$Profilering". Blank's heating temperature is setting $1100^{\circ}C$ for manufacturing a trial profile ring on the basis of FE-Simulation. As a result of manufacturing alloy 718 profile ring, it is possible to make near target profile shape ring with all of the processing condition which gives in this study.

  • PDF

사출성형의 게이트 위치 최적화

  • Lim, Won-Gil;Kim, Young-Il;Seol, Kwon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.787-791
    • /
    • 1996
  • In injection molding, location of gates have great influence on the quality of plastic parts. Usually, they are located by releated trial and errors of experienced mold designers. In this topic we will present the numerical algorithm for finding the optimal gate locations. Optimization algorithm is devided into two stages. In the first stage, candidated optimal gate locations can be found by geometry of part only; whereas in the next step, more acculate gate locations are selected byiterative computation with optimization part and analysis part. So from the following study, we suggested the modified flow-volume method, which will define the optimal gate locations in injection mold design.

  • PDF

The Optimization of Injection Molding System Using Axiomatic Approach (공리적 개념을 적용한 사출성형 시스템의 최적설계)

  • Kim, Jong-Hun;Lee, Jong-Soo;Cha, Sung-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1020-1027
    • /
    • 2003
  • A traditional mold design has been conducted by an experience-based trial and error, whereby the mold designer would decide the gate locations and processing conditions based on the caring characteristics and its functional requirements. The paper suggests an optimal gate location and processing conditions in the injection molding using a global search method referred to as micro genetic algorithm( ${\mu}$ GA). ${\mu}$ GA yields the optimal solution with a small size of population without respect to design variables for saving time that is needed to calculate the fitness of many individuals. Due to the reason, the paper uses a commercial analysis package of injection molding(CAPA) to analysis a state of flux. In addition to that, axiomatic approach .is applied in the beginning of design. It is a useful method to draw a well-organized and reasonable idea to handle a problem.