• Title/Summary/Keyword: Tresca failure criterion

Search Result 7, Processing Time 0.022 seconds

Reliability Estimation of Solder Joint by Using Failure Probability Model (파손확률 모델을 이용한 솔더 조인트의 건전성 평가)

  • Myoung, No-Hoon;Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.365-370
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and solder joint' failure. The first order Taylor series expansion of the limit state function incorporating with Tresca failure criterion is used in order to estimate the failure probability of solder joints under heated condition. Using shear stresses and shear strains appeared on the solder joint, we estimate the failure probability of solder joints with the Tresca failure criterion. The effects of random variables such as CTE, distance of the solder joint from the neutral point(DNP), temperature variation and height of solder on the failure probability of the solder joint are systematically studied by using the failure probability model with first order reliability method(FORM).

  • PDF

Influence of the Intermediate Principal Stress on Behavior of Overconsolidated Clay (중간주응력(中間主應力)이 과압밀점토(過壓密粘土)의 거동(擧動)에 미치는 영향(影響))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.99-107
    • /
    • 1988
  • A limited number of cubical triaxial tests with independent control of the three principal stresses were performed on an overconsolidated clay. The cubical undisturbed specimens with overconsolidation ratio of 5 were prepared in triaxial chamber after sampling in field. It was found that the intermediate principal stress influences on the stress-strain, undrained strength effective strength, effective friction angle and pore pressure of the overconsolidated clay. When the magnitude of the intermediate principal stress is not same as the minimum principal stress, the failure strength of the overconsolidated clay is underestimated by use of Mohr-Coulomb failure criterion while it can be estimated quite well by use of Lade failure criterion. And the undrained strength of the overconsolidated clay does not coincide with that obtained by Tresca failure criterion.

  • PDF

Three Dimensional Strength Characterisics of Compressible Sand (압축성 모래의 3차원 전단강도 특성)

  • Park, Byeong-Gi;Jeong, Jin-Seop;Im, Seong-Cheol
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.65-76
    • /
    • 1990
  • A series of consolidated drained and untrained cubical triaxial tests were performed to investigate three dimensional strength characteristics of compressible sand. All specimens, which are formed by deposisting a fine sand loosely, were used. Failure strength in terms of effective stress analysis was greatly influenced by the variation of intermediate principal stress and so was failure criterion The adjusted effective frictional angles obtained by the stress state projected on the same octahedral plane showed almost same value, while the measured effective frictional angles showed considerable difference depending on the drainage conditions. Results of total stress analysis in undrained test turned out to fit Tresca's failure criterion well, but results of effective stress analysis turned out to fit Lade's failure criterion well.

  • PDF

A Estimation Method of Settlement for Granular Compaction Pile (조립토 다짐말뚝의 침하량 산정기법)

  • Kim, Hong-Taek;Hwang, Jung-Soon;Park, Jun-Yong;Yoon, Chang-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.286-293
    • /
    • 2005
  • In soft ground the settlement criterion usually governs. Therefore, it is very important not only reasonable assessment of the allowable bearing capacity of the soil but also reasonable assessment of settlement. In the previous studies by many other researchers, load concentration ratio and settlement reduction factor are usually proposed for estimating the settlement of granular compaction piles. In the previous studies, the reinforced ground with granular compaction piles is simplified as composite ground and the analysis is performed with in the basis of this assumption. However, the lateral deformation of granular compaction pile could not be considered and only the relative vertical strength between pile and soils could be considered in the analysis. In this study, a method adapting the Tresca failure criterion is proposed for calculating settlement of granular compaction pile. Proposed method can be considered the strength of pile material, pile diameter, installing distance of pile and the deformation behavior of vertical and horizontal directions of pile. In the presented study, large-scale field load test is performed and the results are described. Also, predictions of settlements from the proposed method are compared with the results of the load test. In addition, a series of parametric study is performed and the design parameters are analyzed.

  • PDF

A Design Variable Study of Plane Stress Element by Reliability Analysis (신뢰성 해석에 의한 평면응력요소의 설계변수 분석)

  • 박석재;최외호;김요숙;신영수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.102-109
    • /
    • 2001
  • In order to take account of the statistical properties of probability variables used in the structural analysis, the conventional approach using the safety factor based on past experience usually estimated the safety of a structure. The real structures could only be analyzed with the error in estimation of loads, material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis. Structural safety could not precisely be appraised by the traditional structural design concept. Recently, new approach based on the probability concept has been applied to the assessment of structural safety using the reliability concept. Thus, the computer program by the Probabilistic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. The reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. And proper failure criterion must be used to design safely.

  • PDF

Reliability Analysis of Plane Stress Element According to Limit State Equations (한계상태방정식에 따른 평면응력요소의 신뢰성해석)

  • Park, Seok Jae;Choi, Wae Ho;Kim, Yo Suk;Shin, Yeong-Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • In order to consider statistical properties of probability variables used in the structural analysis the conventional approach using the safety factor based on past experience usually estimated the safety of a structure Also the real structures could only be analyzed with the error in estimation of loads material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis Safety of structure could not precisely be appraised by the traditional structural design concept Recently new aproach based on the probability concept has been applied to the assessment of structural safety using the reliability concept Thus the computer program by the Probabilitstic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. Verification of the reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. The proper failure criterion according to characteristic of materials must be used for safe design.

  • PDF

Suggestion of the Settlement Estimation Method for Granular Compaction files Considering Lateral Deformations (횡방향 변형을 고려한 조립토 다짐말뚝의 침하량 평가기법 제안)

  • Hwang Jung-Soon;Kim Hong-Taek;Kim Seung-Wook;Koh Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • In cases of the loosely accumulated ground and soft clayey soils, the settlement criterion usually governs in evaluating the stability of structures. The settlement is also a dominant factor to control the design of granular compaction piles mainly applied to the reinforcement of foundation structures in soft ground. In the previous studies, settlement behaviors of granular compaction piles have generally been analyzed with an evaluation of the settlement reduction factor based on the load-sharing ratio and the replacement ratio. In this approach, however, since the reinforced ground with granular compaction piles is simplified as the composite ground, only the difference of a relative vertical strength between piles and soils is taken into account without reflecting lateral behaviors of granular compaction piles. In the present study, the method of estimating the settlement of granular compaction piles is proposed by synthetically considering a vertical strength of the ground, lateral behaviors of granular compaction piles, the strength of pile materials, a pile diameter, and an installation distance of the pile. Further, far the verification of a validity of the proposed method, predicted settlements are compared with results from previous studies. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.