• 제목/요약/키워드: Trend Analysis visualization

검색결과 75건 처리시간 0.02초

텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로 (A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github)

  • 정지선;김동성;이홍주;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.1-19
    • /
    • 2019
  • 제4차 산업혁명을 이끄는 주요 원동력 중 하나인 인공지능 기술은 이미지와 음성 인식 등 여러 분야에서 사람과 유사하거나 더 뛰어난 능력을 보이며, 사회 전반에 미치게 될 다양한 영향력으로 인하여 높은 주목을 받고 있다. 특히, 인공지능 기술은 의료, 금융, 제조, 서비스, 교육 등 광범위한 분야에서 활용이 가능하기 때문에, 현재의 기술 동향을 파악하고 발전 방향을 분석하기 위한 노력들 또한 활발히 이루어지고 있다. 한편, 이러한 인공지능 기술의 급속한 발전 배경에는 학습, 추론, 인식 등의 복잡한 인공지능 알고리즘을 개발할 수 있는 주요 플랫폼들이 오픈 소스로 공개되면서, 이를 활용한 기술과 서비스들의 개발이 비약적으로 증가하고 있는 것이 주요 요인 중 하나로 확인된다. 또한, 주요 글로벌 기업들이 개발한 자연어 인식, 음성 인식, 이미지 인식 기능 등의 인공지능 소프트웨어들이 오픈 소스 소프트웨어(OSS: Open Sources Software)로 무료로 공개되면서 기술확산에 크게 기여하고 있다. 이에 따라, 본 연구에서는 온라인상에서 다수의 협업을 통하여 개발이 이루어지고 있는 인공지능과 관련된 주요 오픈 소스 소프트웨어 프로젝트들을 분석하여, 인공지능 기술 개발 현황에 대한 보다 실질적인 동향을 파악하고자 한다. 이를 위하여 깃허브(Github) 상에서 2000년부터 2018년 7월까지 생성된 인공지능과 관련된 주요 프로젝트들의 목록을 검색 및 수집하였으며, 수집 된 프로젝트들의 특징과 기술 분야를 의미하는 토픽 정보들을 대상으로 텍스트 마이닝 기법을 적용하여 주요 기술들의 개발 동향을 연도별로 상세하게 확인하였다. 분석 결과, 인공지능과 관련된 오픈 소스 소프트웨어들은 2016년을 기준으로 급격하게 증가하는 추세이며, 토픽들의 관계 분석을 통하여 주요 기술 동향이 '알고리즘', '프로그래밍 언어', '응용분야', '개발 도구'의 범주로 구분하는 것이 가능함을 확인하였다. 이러한 분석 결과를 바탕으로, 향후 다양한 분야에서의 활용을 위해 개발되고 있는 인공지능 관련 기술들을 보다 상세하게 구분하여 확인하는 것이 가능할 것이며, 효과적인 발전 방향 모색과 변화 추이 분석에 활용이 가능할 것이다.

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.

빅카인즈를 활용한 GenAI(생성형 인공지능) 기술 동향 분석: ChatGPT 등장과 스타트업 영향 평가 (GenAI(Generative Artificial Intelligence) Technology Trend Analysis Using Bigkinds: ChatGPT Emergence and Startup Impact Assessment)

  • 이현주;성창수;전병훈
    • 벤처창업연구
    • /
    • 제18권4호
    • /
    • pp.65-76
    • /
    • 2023
  • 기술 창업 및 스타트업 분야에서는 인공지능(AI)의 발전이 사업 모델 혁신의 핵심 주제로 부상하였다. 이를 통해 벤처기업들은 경쟁력 확보를 위해 AI를 중심으로 다양한 노력을 기울이고 있다. 본 연구는 GenAI 기술의 발전과 스타트업 생태계 간의 관계를 국내 뉴스 기사를 분석하여, 기술 창업 분야의 동향을 파악하는 것을 목적으로 하였다. 본 연구는 빅카인즈(BIG Kinds)를 활용하여 1990년부터 2023년 8월 10일까지의 국내 뉴스 기사에서 ChatGPT의 등장 전후를 중심으로 GenAI 관련 뉴스 기사, 주요 이슈 및 트렌드의 변화를 조사하였으며, 네트워크 분석 및 키워드 시각화를 통해 관련성을 시각화하였다. 연구결과, 2017년부터 2023년까지 GenAI에 대한 언급이 기사 내에서 점차 증가하였다. 특히, OpenAI의 GPT-3.5를 기반으로 한 ChatGPT 서비스가 주요 이슈로 부각 되었는데, 이 서비스는 OpenAI의 DALL-E, Google의 MusicLM, VoyagerX의 Vrew 등과 같은 언어 모델 기반 GenAI 기술의 대중화를 시사하였다. 이로써 생성형 인공지능은 다양한 분야에서의 유용성을 입증하며, ChatGPT 출시 이후 국내 기업들의 한국어 언어 모델 개발 활동이 활발히 이루어지고 있는 것으로 확인되었다. 리튼 테크놀로지스와 같은 스타트업들도 GenAI를 활용하여 기술 창업 분야에서의 영역을 확장하고 있다. 본 연구에서는 GenAI 기술과 스타트업 창업 활동 간의 연관성을 확인하였으며, 이는 혁신적인 비즈니스 전략의 구축 지원을 시사하며 GenAI 기술의 발전과 스타트업 생태계의 성장을 지속해서 형성할 것으로 전망된다. 더 나아가 국제적 동향 및 다양한 분석 방법의 활용, 실제 현장에서의 GenAI 응용 가능성을 모색하는 연구가 요구 된다. 이러한 노력은 GenAI 기술의 발전과 스타트업 생태계의 성장 발전에 이바지할 것으로 기대된다.

  • PDF

집단지성 기반 학습자료 북마킹 서비스 시스템 (Learning Material Bookmarking Service based on Collective Intelligence)

  • 장진철;정석환;이슬기;정치훈;윤완철;이문용
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.179-192
    • /
    • 2014
  • 최근 IT 환경의 변화에 따라 웹 서비스를 기반으로 대규모 사용자 대상의 상호 참여적인 MOOC(Massive Open Online Courses)과 같은 온라인 교육 환경이 부상하고 있다. 그러나 온라인 교육 시스템은 원거리로 학습이 이루어짐에 따라 학습자의 자발적 동기를 꾸준히 유지하기 어려우며, 또한 학습자 간에 지식을 공유하고 공유한 지식을 활용하는 기능이 부족하다. 이러한 문제를 극복하기 위해 구성주의적 학습이론과 집단지성에 기반하여 학습자가 보유한 학습자료를 공유하고 개인화된 학습자료 추천을 받을 수 있는 학습자료 북마킹 서비스인 WeStudy를 구현하였다. 위키피디아(Wikipedia), 슬라이드쉐어 (SlideShare), 비디오렉쳐스 (VideoLectures) 등 현존하는 집단지성 기반 서비스들의 주요 기능으로부터 필요한 집단지성 기능들을 검토하였으며, 본 서비스의 주요 기능으로 1) 리스트 및 그래프 형태의 학습자료 리스트 시각화, 2) 개인화된 학습자료 추천, 3) 보다 상세한 학습자료 추천을 위한 관심 학습자 지정 등을 도출하여 시스템을 설계하였다. 이후, 웹 기반으로 구현된 세 가지 주요기능 별로 개량된 휴리스틱 사용성 평가 방법을 통해 개발된 시스템의 사용성 평가를 실시하였다. 10명의 HCI 분야 전공자 및 현업 종사자를 대상으로 정량적 및 정성적인 평가 결과, 세 가지의 주요 기능에서 전반적으로 사용성이 우수한 것으로 판정되었다. 주요 기능 별 정성적인 평가에서 도출된 여러 마이너 이슈들을 반영할 필요가 있으며, 향후 대규모 사용자를 대상으로 본 서비스를 보급하고 이용할 수 있도록 제공하여 자발적인 지식 공유 환경을 조성할 수 있을 것으로 전망된다.

인구이동 연구에 대한 공간통계학적 접근: 장소특수적 거리 패러미터의 추출과 공간적 패턴 분석 (A Spatial Statistical Approach to Migration Studies: Exploring the Spatial Heterogeneity in Place-Specific Distance Parameters)

  • 이상일
    • 한국지역지리학회지
    • /
    • 제7권3호
    • /
    • pp.107-120
    • /
    • 2001
  • 이 연구의 목적은 장소-특수적 거리 패러미터를 측정하는 방법론을 제시하고, 그것이 인구이동 연구에서 가지는 의미에 대해 미국의 48개 주간(州間) 인구 이동자료를 사례로 검토해보는 것이다. 전통적인 인구이동 연구에서 추출하는 거리 패러미터는 인구 이동량에 대해 거리가 가지는 평균적인 효과를 측정하는 것이다. 그러나, 그 평균적인 거리 패러미터는 모든 지역간 인구이동의 대표값일 뿐 인구이동에 있어 거리가 가지는 효과의 공간적 변이에 대해서는 아무런 통찰을 제공해 주지 못한다. 장소-특수적 거리 패러미터란 개개 소지역이 평균적인 거리 패러미터에 대해 가지는 상대적인 값이며, 거리가 인구이동에 대해 가지는 효과의 지역적 특이성을 측정하려고 한다. 이러한 연구는 최근 계량지리학 분야에서 발생하고 있는 변화에 부응하는 것이다. 1980년대 이후, 계량지리학은 공간통계학이라는 보다 폭넓은 개념의 확장과 일반연구환경으로서의 지리정보체계(GIS)치 성장으로 학문적 재구조화 과정 속에 있다. 이러한 재구조화 과정은 특정한 패러다임으로서의 탐구적 공간자료분석(ESDA)과 그것을 통계적으로 가능케 하는 국지 통계(local statistics)의 발달로 특징 지워진다. 통계적으로 가공되어 지역에 부여된 값으로 정의되는 국지 통계는 그것의 시각화를 효과적으로 수행하는 GIS와 결합함으로써, 시각화(visualization)와 과학활동으로서의 탐구(exploration)를 강조하는 탐구적 공간자료분석이라는 계량지리학의 새로운 패러다임을 효과적으로 수행하게 된다. 이러한 맥락에서, 장소-특수적 거리 패러미터는 하나의 국지 통계치로 인식될 수 있으며, 그것이 보여주는 공간적 패턴을 탐구하는 것은, 인구이동연구에서 탐구적 공간자료분석의 전형을 수행하는 것이라 올 수 있다. 장소-특수적 거리 패러미터는 출발지-특수적 거리 패러미터와 도착지-특수적 거리 패러미터로 나뉘어 지는데, 이러한 패러미터를 추출하기 위해서는 특정한 통계기법이 요구된다. 이러한 패러미터를 추출하기 위해 전통적인 혹은 보다 진보된 형태의 중력모델이나 엔트로피-극대화 모델이 활용될 수 있지만, 본 논문은 포아송 회귀분석을 이용함으로써 패러미터의 추출이 가장 효과적으로 이루어짐을 논증하고 있다. 이 방법론은 1985년과 1990년 사이에 발생한 미국 48개 주간 인구이동량에 대한 사례연구에 적용되었다. 그 연구 결과는 장소-특수적 거리 패러미터의 공간성을 명확히 보여준다. 즉, 평균적 거리 패러미터로 부터의 편기로 이해될 수 있는 장소-특수적 거리 패러미터들이 지역별로 상당한 차이를 보여줄 뿐만 아니라(공간적 이질성), 유사한 장소-특수적 거리 패러미터들이 공간적으로 집중되어 있음을 확인할 수 있었다(공간적 의존성). 지역차에 대한 강한 전통을 가지고 있는 지리학내에서 태동한 계량지리학이 지역적 특이성을 무시하는 방향으로 발전해 온 것은 아이러니라 할 수 있다. 그것은 계량적 방법론의 한계라기 보다는 그 방법론을 사용하는 전통적 계량지리학자의 한계라고 보아야 할 것이다. 이러한 의미에서 본 연구는 최근 계량지리학의 경향을 인구이동연구에 적용한 사례임과 동시에 맥락 의존성을 강조하는 보다 폭넓은 과학운동의 계량지리적 반응이다.

  • PDF