• 제목/요약/키워드: Trenchless technology

검색결과 14건 처리시간 0.019초

SUSTAINABILITY SOLUTIONS USING TRENCHLESS TECHNOLOGIES IN URBAN UNDERGROUND INFRASTRUCTURE DEVELOPMENT

  • Dae-Hyun (Dan) Koo;Samuel Ariaratnam
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.367-374
    • /
    • 2013
  • Underground infrastructure systems provide essential public services and goods through buried structures including water and sewer, gas and petroleum, power and communication pipelines. The majority of existing underground infrastructure systems was installed in green field areas prior to development of complex urban built environments. Currently, there is a global trend to escalate major demand for underground infrastructure system renewal and new installation while minimizing disruption and maintaining functions of existing superstructures. Therefore, Engineers and utility owners are rigorously seeking technologies that minimize environmental, social, and economic impact during the renewal and installation process. Trenchless technologies have proven to be socially less disruptive, more environmentally friendly, energy conservative and economically viable alternative methods. All of those benefits are adequate to enhance overall sustainability. This paper describes effective sustainable solutions using trenchless technologies. Sustainability is assessed by a comparison between conventional open cut and trenchless technology methods. Sustainability analysis is based on a broad perspective combining the three main aspects of sustainability: economic; environmental; and social. Economic includes construction cost, benefit, and social cost analysis. Environmental includes emission estimation and environmental quality impact study. Social includes various social impacts on an urban area. This paper summarizes sustainable trenchless technology solutions and presents a sustainable construction method selection process in a proposed framework to be used in urban underground infrastructure capital improvement projects.

  • PDF

신소재 복합재료를 이용한 비굴착 지하매설관 보수-보강공법 (Trenchless Repairing-Reinforcing Process of Underground Pipes with Advanced Composite Materials)

  • 진우석;권재욱;이대길;유애권
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.43-48
    • /
    • 2001
  • To overcome the disadvantages of conventional excavation technology, various trenchless (or excavation free, or no-dig) repair-reinforcement technologies have been developed and tried. But trenchless technologies so fat developed have some brawbacks such as high cost and inconvenience of operation. In this study, a repairing-reinforcing process for underground pipes with glass fiber fabric polymer composites using VARTM(Vacuum Assisted Resin Transfer Molding) has been developed. The developed process requires shorter operation time and lower cost with smaller and simpler operating equipments than those of the conventional trenchless technologies. For the reliable operation of the developed method, a simple method to apply pressure and vacuum to the reinforcement was devised and flexible mold technology was tried. Also, resin filling and cure status during RTM process were monitored with a commercial dielectrometry cure monitoring system, LACOMCURE. From the investigation, it has been found that the developed repairing-reinforcing technology with appropriate process variables and on-line cure monitoring has many advantages over conventional methods.

  • PDF

노후하수관 교체시 비굴착방식 신공법기술개발 (Design and Fundamental Experiment on Trenchless Replacement of Old Sewerage)

  • 노종호;이영기;노홍구;한민호;이성철;임일
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1327-1331
    • /
    • 2008
  • The study aims to enhance the trenchless replacement of old sewerage. The trenchless replacement was designed as real size and tested in the field of construction. This trenchless replacement was new technology in construction. The result was good performance in the construction. In the future, the trenchless replacement should be use as the exchange equipment of old sewerage.

  • PDF

RTM을 이용한 노후 지하 매설관의 보수-보강에 관한 연구 (A Study on Repairing Retired Underground Buried Pipes Using RTM)

  • 진우석;권재욱;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.249-252
    • /
    • 2000
  • To overcome problems of excavation technology far repairing or replacing underground buried pipes which are worn out or damaged, various trenchless repair-reinforcement technologies have been invented. But these trenchless technologies also have many problems in the aspect of economy and convenience of operation. In this research, the repair-reinforcement process using RTM (Resin Transfer Molding) which can solve problems of present trenchless technologies was developed. The resin wetting and void removal during RTM process to form large composite structures inside of buried pipes were experimentally investigated. From the experiment, it was found that the new technology had advantage over conventional methods by employing appropriate process parameters and void removal vents.

  • PDF

Standardization and Method Selection for the Trenchless Repair Technology of Sewer using Cured-in-place Pipe

  • Kim, Taeeung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권2호
    • /
    • pp.70-78
    • /
    • 2022
  • The trenchless entire repair technology (TERT) have many different names depending on the companies, and they have the same or similar methods as well as materials. In addition, there was quiet difficulty in application of field working and even confuse to classify for new TERT, while application criteria of TERT is not listed systematically. This study proposed standardization and method for TERT affecting by pipe condition, working materials, working method, specification/quantity per unit according to field condition, strange affairs and others. Determination criteria of defective sewer pipe has proposed to effective method which modify a criteria between Ministry of Environment and Seoul Metropolitan City. A Cured-in-place pipe (CIPP) is suitable for TERT, and the design criteria for the entire broken pipe are proposed when the pipe itself deforms more than 10%. A check lists are specimen preparing, hardening site made by clamped mold, numbers, flexural and tensile property, water leak and desquamation test, and have to use material property of minimum CIPP value depend on ISO 11296-4, ISO 11297-4, KS M3550-7 and KS M3550-9.

비굴착 전체보수용 라이너의 두께 설계식 및 말단부 처리에 따른 라이너의 안정성 검토 연구 (Evaluation of Design Equation and Stability for Trenchless Pipe Liner System with Boundary Treatment)

  • 박종섭;송호면
    • 한국산학기술학회논문지
    • /
    • 제8권5호
    • /
    • pp.1166-1172
    • /
    • 2007
  • 비굴착 보수 공법에 의한 파이프 보강은 전체 파손관과 부분 파손관으로 구분되어 정의된다. 부분 파손된 관내에 사용된 라이너 관은 수압만이 작용되며, 상재 하중 및 토압, 지하수에 의한 압력에 대해서 기존의 관이 모두 저항하게 된다. 본 연구는 기존에 사용되고 있는 보강튜브경화공법 설계식에 대한 라이너 보수관 적용성을 평가하여 적용가능함을 확인하였다. 또한, 개발된 말단부 처리 공법이 적용된 라이너의 안전성을 유한요소해석을 통해 평가하였다.

  • PDF

신소재 복합재료를 이용한 비굴착 지하매설관 보수-보강공법 (Trenchless Repairing-Reinforcing Process of Underground Pipes with Advanced Composite Materials)

  • 진우석;권재욱;이대길;유애권
    • Composites Research
    • /
    • 제15권1호
    • /
    • pp.21-31
    • /
    • 2002
  • 기존 굴착식 기술의 단점을 극복하기 위해 다양한 비굴착 보수-보강기술이 개발되고 시도되었으나, 이제까지 개발된 비굴착 기술들은 높은 공사비용과 시공의 불편함이라는 결점을 갖고 있다. 본 연구에서는 VARTM(Vacuum Assisted Resin Transfer Molding)과 유리섬유 고분자 복합재료를 이용해 지하매설관을 보수-보강하는 연구를 수행하였다. 개발된 공법은 기존 기술보다 적은 비용과 공사 시간을 필요로 하며 사용되는 장비 또한 간단하다. 신뢰성 있는 공정을 위해 유연한 금형의 역할을 하는 보강재에 수지를 주입한 후, 가압과 진공을 가하는 방법이 시도되었으며, 상용 유전장치인 LACOMCURE를 사용하여 RTM 공정 중 수지의 함침과 경화 상태를 추적하였다. 연구결과를 통해, 적절한 공정 변수 및 온라인 경화 모니터링 기법을 적용한 본 공법이 기존 방법에 비해 많은 장점을 가짐을 알 수 있었다.

최적의 비개착공법 선정을 위한 계층분석법의 적용에 관한 기초연구 (A preliminary study on the use of analytic hierarchy process for selecting a optimum trenchless excavation method)

  • 강태호;장수호;최순욱;이철호;조진우
    • 한국터널지하공간학회 논문집
    • /
    • 제17권6호
    • /
    • pp.685-693
    • /
    • 2015
  • 도심지에서는 지속적인 지하 개발이 요구되고 있으며, 도심지공사는 주변구조물 및 기존 도로의 기능을 유지하면서 신속하게 진행되어야한다. 이러한 상황에서 비개착공법은 시공 시 주변 지반의 변위를 최소화하고 건설을 진행하기에 매우 유용한 공법이다. 그러나 비개착공법 선정을 위해서는 경제성, 시공성, 환경문제, 주변구조물 등 다양한 현장조건들을 고려하여야 한다. 따라서 본 연구에서는 의사결정기법을 활용하여 비개착공법의 최적 선정을 위한 기초연구를 수행하였다. 특히, 다중복합의사결정기법 중에 하나인 계층분석법을 이용하여 전문가 의견을 반영한 합리적인 공법선정의 평가기준과 규칙을 설정하였다. 분석 결과, 비개착공법을 선정하는데 있어서 필요한 고려항목들의 중요도를 도출하였고, 지반조건별로 가장 효과적인 비개착공법들이 제시되었다.

유리섬유를 이용한 하수관의 고강도 현장경화 비굴착 보수 공법 재료의 개발 및 물성 특성 연구 (Study of structural properties and development of high strength Cured-In-Place Pipe (CIPP) liner for sewer pipes using glass fiber)

  • 지현욱;;유성수;강정희
    • 상하수도학회지
    • /
    • 제34권2호
    • /
    • pp.149-159
    • /
    • 2020
  • Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.

청천시 오수량을 고려한 합류식 하수도 소류력 설계법과 이를 활용한 하수관거 개보수방안 (A combined sewer design method using tractive force considering wastewater flow on non-rainy days and its application for improvement methods of sewer)

  • 지현욱;유성수;송호면;강정희
    • 상하수도학회지
    • /
    • 제34권3호
    • /
    • pp.211-220
    • /
    • 2020
  • When domestic sewage and rainwater runoff are discharged into a single sewer pipe, it is called a "combined sewer system." The sewage design standards in Korea specify the flow velocity based only on the volume of rainfall; therefore, sedimentation occurs on non-rainy days owing to the reduced flow rate and velocity. This sedimentation reduces the discharge capacity, causes unpleasant odors, and exacerbates the problem of combined sewer overflow concentration. To address this problem, the amount of sewage on non-rainy days, not just the volume of rainfall, should also be considered. There are various theories on sedimentation in sewer movement. This study introduces a self-cleansing velocity based on tractive force theory. By applying a self-cleansing velocity equivalent to the critical shear stress of a sand particle, sedimentation can be reduced on non-rainy days. The amount of sewage changes according to the water use pattern of citizens. The design hourly maximum wastewater flow was considered as a representative value, and the velocity of this flow should be more than the self-cleansing velocity. This design method requires a steeper gradient than existing design criteria. Therefore, the existing sewer pipelines need to be improved and repaired accordingly. In this study, five types of improvement and repair methods that can maximize the use of existing pipelines and minimize the depth of excavation are proposed. The key technologies utilized are trenchless sewer rehabilitation and complex cross-section pipes. Trenchless sewer rehabilitation is a popular sewage repair method. However, it is complex because the cross-section pipes do not have a universal design and require continuous research and development. In an old metropolis with a combined sewer system, it is difficult to carry out excavation work; hence, the methods presented in this study may be useful in the future.