• Title/Summary/Keyword: Trees dieback

Search Result 18, Processing Time 0.024 seconds

Dieback Reality of Apple Trees Resulting from Soil-Borne Fungal Pathogens in South Korea from 2016 to 2019

  • Lee, Sung-Hee;Shin, Hyunman;Chang, Who-Bong;Ryu, Kyoung-Yul;Kim, Heung Tae;Cha, Byeongjin;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.26 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Recently, the severe dieback of apple trees resulting from soil-borne diseases has occurred in South Korea. The casual agents of dieback were surveyed on 74 apple orchards that had been damaged nationwide in 2016-2019. The number of apple orchards affected alone by Phytophthora rot, violet root rot, and white root rot was 31, 34, and 3, respectively. Also, the total number of mixed infection orchards was 6. Out of 9,112 apple trees affected by dieback, the trees damaged by Phytophthora rot, violet root rot, and white root rot were 3,332, 3,831, and 44, respectively. Moreover, the total number of mixed infection apple trees was 1,905. The provinces mainly affected were Gyeongnam, Gyeongbuk, Chungbuk, and Jeonbuk. The survey on these infected apple orchards will be available to form management strategy for the dieback that had been increased by soil-borne fungal pathogens.

Outbreaks of Yuzu Dieback in Goheung Area: Possible Causes Deduced from Weather Extremes

  • Kim, Kwang-Hyung;Kim, Gyoung Hee;Son, Kyeong In;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.290-298
    • /
    • 2015
  • Starting in 2012, severe diebacks usually accompanied by abundant gum exudation have occurred on yuzu trees in Goheung-gun, Jeonnam Province, where severely affected trees were occasionally killed. On-farm surveys were conducted at 30 randomly-selected orchards located at Pungyang-myeon, Goheung-gun, and the resulting disease incidences were 18.5% and 39.6% for dieback and gumming symptoms, respectively. Black spots on branches and leaves also appeared on infected trees showing a typical dieback symptom. Morphological and molecular identifications of the isolated fungal organisms from lesions on the symptomatic leaves and branches revealed that they are identical to Phomopsis citri, known to cause gummosis. In order to find the reason for this sudden epidemic, we investigated the weather conditions that are exclusively distinct from previous years, hypothesizing that certain weather extremes might have caused the severe induction of pre-existing disease for yuzu. There were two extreme temperature drops beyond the yuzu's cold hardiness limit right after an abnormally-warm-temperature-rise during the winter of 2011-12, which could cause severe frost damage resulting in mechanical injuries and physiological weakness to the affected trees. Furthermore, there was an increased frequency of strong wind events, seven times in 2012 compared to only a few times in the previous years, that could also lead to extensive injuries on branches. In conclusion, we estimated that the possible damages by severe frost and frequent strong wind events during 2012 could cause the yuzu trees to be vulnerable to subsequent fungal infection by providing physical entries and increasing plant susceptibility to infections.

Topographic and Meteorological Characteristics of Pinus densiflora Dieback Areas in Sogwang-Ri, Uljin (울진 소광리 산림유전자원보호구역 내 금강소나무 고사지역의 지형 환경 특성 분석)

  • Kim, Jaebeom;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.10-18
    • /
    • 2017
  • Korean Red Pine (Pinus densiflora) has been protected and used as the most ecologically and socio-culturally important tree species in Korea. However, as dieback of Korean red pines has occurred in the protected area of the forest genetic resources. The aims of this study is to identify causes for dieback of pine tree by investigating topographical characteristics of pine tree dieback and its correlation to meteorological factors. We extracted the dead trees from the time series aerial images and analyzed geomorphological characteristics of dead tree concentration area. As a result, 1,956 dead pine trees were extracted in the study region of 2,600 ha. Dieback of pine trees was found mostly in the areas with high altitude, high solar radiation, low topographic wetness index, south and south-west slopes, ridgelines, and high wind exposure compared to other living pine forest area. These areas are classified as high temperature and high drought stress regions due to micro-climatic characteristics affected by topographic factors. As high temperature and drought stress are generally increasing with climate change, we can evaluated that a risk of pine tree dieback is also increasing. Based on these geomorphological characteristics, we developed a pine tree dieback risk map using Maximum Entropy Model (MaxEnt), and it can be useful for establishing Korean red pine protection and management strategies.

Developing drought stress index for monitoring Pinus densiflora diebacks in Korea

  • Cho, Nanghyun;Kim, Eunsook;Lim, Jong-Hwan;Seo, Bumsuk;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.115-125
    • /
    • 2020
  • Background: The phenomenon of tree dieback in forest ecosystems around the world, which is known to be associated with high temperatures that occur simultaneously with drought, has received much attention. Korea is experiencing a rapid rise in temperature relative to other regions. Particularly in the growth of evergreen conifers, temperature increases in winter and spring can have great influence. In recent years, there have been reports of group dieback of Pinus densiflora trees in Korea, and many studies are being conducted to identify the causes. However, research on techniques to diagnose and monitor drought stress in forest ecosystems on local and regional scales has been lacking. Results: In this study, we developed and evaluated an index to identify drought and high-temperature vulnerability in Pinus densiflora forests. We found the Drought Stress Index (DSI) that we developed to be effective in generally assessing the drought-reactive physiology of trees. During 2001-2016, in Korea, we refined the index and produced DSI data from a 1 × 1-km unit grid spanning the entire country. We found that the DSI data correlated with the event data of Pinus densiflora mass dieback compiled in this study. The average DSI value at times of occurrence of Pinus densiflora group dieback was 0.6, which was notably higher than during times of nonoccurrence. Conclusions: Our combination of the Standard Precipitation Index and growing degree days evolved and short- and long-term effects into a new index by which we found meaningful results using dieback event data. Topographical and biological factors and climate data should be considered to improve the DSI. This study serves as the first step in developing an even more robust index to monitor the vulnerability of forest ecosystems in Korea.

Risk Assessment of Pine Tree Dieback in Uljin and Bonghwa (울진·봉화 일대 금강소나무 고사 피해 특성 분석)

  • Eun-Sook Kim;Kiwoong Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.117-128
    • /
    • 2023
  • Tree dieback in Geumgang pine forest has occurred in Uljin and Bonghwa since the 2010s. In order to identify status of tree dieback and prevent further damages, a monitoring project for tree dieback in Geumgang pine forest had been launched by Southern regional office of forest service in 2020. This study was conducted to understand the characteristics of tree dieback occurrence and assess the high risk areas using the occurrence data in the project. Pine tree dieback occurred frequently in areas with mountain ridges in high elevation, dry south-facing slopes, mature stands, and high temperature rise in winter. Furthermore, the result of risk assessment showed that 6.2 percent(5,294ha) of Geumgang pine forest(85,000 ha) in total study area are at high risk of tree dieback. As the pine trees in the high risk area are prone to experience the dieback due to temperature and drought-related extreme weather events, regular forest management activities are needed to reduce the drought stress of pine trees. Forest health management for the pine forest with high protection priority can be also useful strategy to counter the risk of decline. This results can be used as the basic information for the adaptive forest management to climate change.

First Report of the Ash Dieback Pathogen Hymenoscyphus fraxineus in Korea

  • Han, Jae-Gu;Shrestha, Bhushan;Hosoya, Tsuyoshi;Lee, Kang-Hyo;Sung, Gi-Ho;Shin, Hyeon-Dong
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.391-396
    • /
    • 2014
  • In the past two decades, European ash trees (Fraxinus spp.) have been severely damaged due to ash dieback disease, which is caused by the fungal species Hymenoscyphus fraxineus (Chalara fraxinea in the anamorphic stage). Recent molecular phylogenetic and population genetic studies have suggested that this fungus has been introduced from Asia to Europe. During a fungal survey in Korea, H. fraxineus-like apothecia were collected from fallen leaves, rachises, and petioles of Korean ash and Manchurian ash trees. The morphological and ecological traits of these materials are described with the internal transcribed spacer rDNA sequence comparison of H. fraxineus strains collected from Korea, China and Japan.

Management Guidelines of Natural Monuments Old Trees through an Ananlysis of Growing Environments II -A Focus on Seoul, Incheon and Gyeonggi provinces- (생육환경 분석을 통한 천연기념물 노거수의 관리방안 II -서울·인천·경기지역을 중심으로-)

  • Kang, Hyun-Kyung;Lee, Seung-Je
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.2
    • /
    • pp.36-45
    • /
    • 2004
  • This study was conducted to formulate management guidelines for monumental old trees in Korea through analysis of growing environments. A total of 20 old trees designated as natural monuments in Seoul, Incheon, and Gyeonggi provinces were surveyed for biological characteristics, surrounding environments, root collar conditions, tree health, and soil characteristics. Relationships among root collar conditions, tree health, and soil characteristics were analyzed by correlation. The old solitary trees designated as natural monuments included Pinus bungeana(4 trees), Juniperus chinensis(3 trees), Ginkgo biloba(3 trees), Poncirus trifoliata(2 trees), Actinidia arguta, Wisteria floribunda, Thuja orientalis, Quercus variabilis, Sophora japonica, Fraxinus rhynchophylla, Zelkova serrata, and Pinus densiflora. The tree height ranged from 3.56 to 67m, and root collar diameter ranged from 1.01 to 15.2m. The monumental old trees were growing on the various sites ranging from gardens, historical sites, open agricultural fields, mountain hills, to near the ocean beaches and streams. The coverage of bald land ranged from 50 to 100%, and depth of filled soil around the root collar ranged from 0 to 50cm. Tree health was expressed as the amount of branch dieback, cavity development, detachment of cambial tissue, infliction by diseases and insects. The branch dieback ranged from 5 to 20%, cavity development ranged from 10 to 100$cm^3$, detachment of cambial tissue ranged from 5 to 45%, and infliction by diseases and insects ranged from 5 to 20%. Soil pH ranged from 5.9 to 8.3, organic matter contents from 12 to 56%, phosphorus contents from 104 to 618ppm, while soil compaction ranged from 7 to 28mm. Results of correlation analysis showed that coverage of bald land was the most serious factor to deteriorate the cavity development and detachment of cambial tissue. In addition, chemical properties of soils seemed to be related to the health of the trees.

Dieback of Apple Tree by Major Soil Borne Diseases in Chungbuk Province from 2013 to 2015 (2013-2015년 충북에서 주요 토양병에 의한 사과나무 고사 실태)

  • Lee, Sung-Hee;Kwon, Yeuseok;Shin, Hyunman;Kim, Ik-Jei;Nam, Sang-Yeong;Hong, Eui Yon;Kwon, Soon-Il;Kim, Daeil;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.198-201
    • /
    • 2016
  • Recently, severe dieback of apple tree has occurred in the apple orchards of Chungbuk province. Dieback rate and its casual agents have been investigated on the Chungbuk province apple orchards in 2013-2015. Out of 29,265 apple trees in the 27 orchards throughout Chungbuk province, 4,000 apple trees (13.7%) showed dieback symptoms. The causes of dieback were Phytophthora rot (50.4%), violet root rot by Helicobasidium sp. (27.1%), rodents (10%), white root rot by Rosellinia sp. (6.3%), and freezing injury (6.3%). Compared to previous reports published in 1995 and 2006, Phytophthora rot was the most dominant disease, which is thought to be due to high temperature during growing season and the increase of lowland cultivation. Results of this study will be useful to establish of the management strategy of apple tree dieback that has been increased recently.

First Report of Botryosphaeria dothidea Responsible for Branch Dieback and Canker on Hovenia dulcis in South Korea

  • Lee, Dong-Hyeon;Park, Ji-Won;Kim, Chul-Woo;Kwon, ChunGeun;Kim, Seong Hak
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.2
    • /
    • pp.137-139
    • /
    • 2022
  • In 2021, severely infected trees showing distinct symptoms including branch dieback, necrotic lesions on branches, cankers on the shoots, and dark brown discoloration on the stem on Hovenia dulcis were found in the provincial forest of Jeollabuk-do located in Jangsu, South Korea. The causal agent of the pathogen was identified as Botryosphaeria dothidea based on morphology and sequence comparisons. This is the first confirmed report of B. dothidea causing branch dieback and canker on H. dulcis.

The Control Efficacy of Sodium Hypochlorite against Violet Root Rot Caused by Helicobasidium mompa in Apple

  • Lee, Sung-Hee;Shin, Hyunman;Lee, Hyok-In;Lee, Seonghee
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.513-521
    • /
    • 2022
  • Our study was carried out to determine the control efficacy of sodium hypochlorite (NaOCl) for violet root rot caused by Helicobasidium mompa in apple. The experiment was conducted in the farm located at Chungbuk province in South Korea from 2014 to 2016. When infected apple trees were treated at least two or three times with 31.25 and 62.5 ml/l available chlorine content in NaOCl, it greatly increased the rooting of rootstock, and restored the tree crown density by 44.4-60.5%. In addition, the number of commercial fruit setting was increased by 54.3-64.5%, and the total starch content in shoots was significantly higher than other non-treated apple trees. However, the untreated disease control and thiophanate-methyl WP treated trees showed the symptom of dieback. Therefore, our results indicate that the drenching treatment of NaOCl with 31.25-62.5 ml/l available chlorine content more than two times from late fall to early spring could effectively control the violet root rot and recover tree vigor up to 60%.