다차원 색인 구조 중 대표적인 것은 R-tree에 기초한 색인으로써 공간 정보 등에 있어 강력한 성능을 보인다. 하지만 R-tree의 경우 차원의 수가 증가하거나 이용자 선호에 따라 부분 차원만을 이용하는 경우, 색인을 생성하는 시간이 크게 증가하고 생성된 색인의 효율성이 감소하는 문제를 갖고 있다. 따라서 지속적으로 차원이 증가하고 있는 최근의 다차원 데이터에는 해당 방법들은 적합하지 않다. 본 논문에서는 이런 문제를 해결하기 위해 해시 색인에 기반한 새로운 다차원 색인 구조인 다차원 해시 색인을 제안한다. 다차원 해시 색인은 해시 함수를 통해 데이터들을 유클리드 공간의 버킷들로 분류하여 색인을 생성하고 이후 탐색이 요청되었을 때 이용자 선호도에 따라 선택된 부분 차원의 공간을 탐색할 수 있는 해시 탐색 트리를 생성하여 효과적인 탐색을 수행한다. 실험 결과, 해당 기법은 R-tree와 비교하여 색인 생성에 있어 매우 큰 성능의 향상과 함께 탐색에서도 유사한 탐색 성능을 보이는 것을 확인할 수 있었다.
유비쿼터스 컴퓨팅 환경에서의 LBS, 즉 u-LBS는 실세계의 수많은 객체가 위치정보와 밀접히 연관된 대용량 데이타를 대상으로 한다. 특히, 사용자의 위치 정보와 관련하여 검색하려고 하는 객체인 POI에 대한 빠른 검색이 중요하다. 따라서 u-LBS에서 POI의 효율적인 검색을 위한 인덱스 구조에 대한 연구가 필요하다. 본 논문에서는 u-LBS에서 정적 POI를 대상으로 이를 효율적으로 검색하기 위한 DGR-Tree를 제시한다. DGR-Tree는 변형된 R-Tree를 기본 인덱스로 하고 동적 레벨 그리드를 보조 인덱스로 사용하는 구조이다. DGR-Tree는 점 데이타에 적합하도록 최적화하고 있으며 리프 노드 간 겹침 문제를 해결한다. DGR-Tree에서 동적 레벨 그리드는 점 데이타의 밀집도에 따라 동적으로 구성되며, 각 셀은 DGR-Tree의 리프 노드와 연계를 위한 포인터를 저장하여 리프 노드를 직접 접근하도록 함으로써 인덱스 접근 성능을 향상시킨다. 또한, 본 논문에서는 DGR-Tree를 위한 KNN 검색 알고리즘을 제시한다. 이 알고리즘에서는 KNN 검색 시 후보 셀에 빠르게 접근하기 위하여 동적 레벨 그 리드를 활용하며, 후보를 노드별로 구분하여 저장함으로써 후보 리스트 내에서의 정렬 비용을 감소시킨다. 마지막으로 실험을 통해 DGR-Tree의 우수성을 입증하였다.
최근 CPU의 속도는 메모리의 속도에 비해 훨씬 빠르게 향상되었다. 따라서 주기억 장치의 접근이 주기억장치 데이터베이스 시스템의 성능에서 병목현상으로 나타나고 있다. 기억장치 접근 속도를 줄이기 위해 캐시메모리를 이용하지만, 캐시메모리는 요구되는 데이터가 캐시에서 찾을 수 있는 경우에만 기억장치 접근속도를 줄일 수 있다. 본 논문에서는 $CST^*$-트리라는 범위질의를 위한 새로운 캐시 적응 T-트리 색인구조를 제안한다. $CST^*$-트리는 색인 엔트리를 저장하지 않는 축소된 내부노드들을 캐시메모리에 올려 사용함으로써 캐시메모리의 활용도를 높인다. 그리고 인접한 단말노드들과 내부 색인노드들을 링크포인터를 통해 서로 연결함으로써 색인 엔트리들의 순차적 접근을 가능하도록 한다. 본 논문에서는 성능평가를 위한 비용 모델을 개발하고, 이를 이용하여 캐시미스 발생 횟수를 평가하였다. 그 결과 단일키 값 검색에서는 기존의 캐시만을 고려한 CST-트리에 비해 약 20~30%의 캐시미스 발생 횟수가 감소하였고, 범위질의에서는 기존의 범위질의만을 고려한 색인구조인 $T^*$-트리에 비해 약 10~20%의 캐시미스 발생 횟수가 감소하였다.
최근 고차원 색인 구조들이 멀티미디어 데이터베이스, 데이터 웨어하우징과 같은 데이터베이스 응용에서 유사성 검색을 위해 요구된다. 본 논문에서는 고차원 특징벡터에 대한 효율적인 저장과 검색을 지원하는 셀-기반 시그니쳐 트리(CS-트리)를 제안한다. 제안하는 CS-트리는 고차원 특징 벡터 공간을 셀로써 분할하여 하나의 특징 벡터를 그에 해당되는 셀의 시그니쳐로 표현한다. 특징 벡터 대신 셀의 시그니쳐를 사용함으로써 트리의 깊이를 줄이고, 그 결과 효율적인 검색 성능을 달성한다. 또한 셀에 기반하여 탐색 공간을 효율적으로 줄이는 유사성 검색 알고리즘을 제시한다. 마지막으로 우수한 고차원 색인 기법으로 알려져 있는 X-트리와 삽입시간, k-최근접 질의에 대한 검색 시간 그리고 부가저장 공간 측면에서 성능 비교를 수행한다. 성능비교 결과 CS-트리가 검색 성능에서 우수함을 보인다.
최근에 휴대용 단말기들의 발전으로, 대용량 데이타에 대한 다양한 검색 서비스들이 휴대용 단말기에 제공되고 있다. 정보 검색을 위한 대부분 응용프로그램들은 대용량 데이타를 검색하기 위하여 B-tree나 R-tree와 같은 색인을 사용한다. 그러나 전체 데이타의 매우 적은 부분이 사용자에 의하여 접근된다. 또한, 각 데이타에 대한 접근 빈도수들은 다양하다. 그러나 B-tree나 R-tree와 같은 색인들은 편향적 접근 패턴의 특성을 고려하지 않는다. 그리고 캐쉬는 빠른 접근을 위해서 반복적으로 접근되는 데이타를 메모리에 저장한다. 그러나 캐쉬에서 사용하는 메모리의 크기는 제한적이다. 본 논문에서는 사용자의 검색패턴들을 고려한 디스크 기반의 새로운 색인구조, J-tree를 제안한다. 제안된 색인은 모든 데이터에 대한 일정한 검색속도를 보장하는 균형트리이다. 그리고 자주 접근된 데이타에 대해서는 빠른 검색속도를 제공한다. 성능평가는 다양한 실험환경에서 제안된 색인의 효율성을 보여준다.
점차 중요성이 증가하고 있는 지리 정보 시스템의 효율적인 검색을 위해서는 공간 인덱스가 필요하다. 이를 위하여 본 논문에서는 기존에 개발한 지리 정보 시스템을 위한 데이타 관리기인GOOD 1.0에 공간 인덱스를 처리할 수 있는 공간 인덱스 처리 모듈을 추가하여 GOOD 2.0을 설계 및 구현한다. 즉, 공간 인덱스로는 R tree 및 R* tree를 지원하여 효율적인 검색이 가능하도록 한다. 그리고, 효율성의 향상 정도를 측정하기 위해 성능 평가를 길시하고 결과를 분석한다. 성능 평가 시에는 다양한 환경 요소들을 고려하여 지리 정보 시스템 관리자가 해당 도메인에 적합한 공간 인덱스를 선택하는데 기초 자료로서 사용될 수 있도록 한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제3권5호
/
pp.527-547
/
2009
Moving object management is widely used in traffic, logistic and data mining applications in ubiquitous environments. It is required to analyze spatio-temporal data and trajectories for moving object management. In this paper, we proposed a novel index structure for spatio-temporal aggregation of trajectory in a constrained network, named aCN-RB-tree. It manages aggregation values of trajectories using a constraint network-based index and it also supports direction of trajectory. An aCN-RB-tree consists of an aR-tree in its center and an extended B-tree. In this structure, an aR-tree is similar to a Min/Max R-tree, which stores the child nodes' max aggregation value in the parent node. Also, the proposed index structure is based on a constrained network structure such as a FNR-tree, so that it can decrease the dead space of index nodes. Each leaf node of an aR-tree has an extended B-tree which can store timestamp-based aggregation values. As it considers the direction of trajectory, the extended B-tree has a structure with direction. So this kind of aCN-RB-tree index can support efficient search for trajectory and traffic zone. The aCN-RB-tree can find a moving object trajectory in a given time interval efficiently. It can support traffic management systems and mining systems in ubiquitous environments.
최신 컴퓨터 시스템의 새로운 병목 현상이 메모리 접근에서 발생하고 있다. 메모리의 접근 속도를 줄이기 위해 캐시 메모리가 도입되었지만, 캐시 메모리는 원하는 데이타가 캐시에 옮겨져 있어야 메모리 접근 속도를 줄일 수 있다. 이를 해결하기 위해 기존의 T 트리를 개선한 CST 트리가 제안되었다. 하지만, CST 트리는 범위 검색 시, 불필요한 노드를 검색해야 한다는 단점이 있다. 본 논문은 캐시 효율적인 CST 트리의 장점을 가지며, 범위 검색이 가능하도록 하기 위해 연결 리스트로 각 노드를 연결한 $CST^+$ 트리를 제안하였으며, CST 및 $CSB^+$에 비해 $4{\sim}10$배의 성능 향상을 보였다. 또한, 메인 메모리 데이타베이스 시스템 장애 시, 빠른 데이타베이스 복구를 위해 인덱스의 빠른 재 구축은 전체 데이타 복구 성능에 있어 매우 중요한 부분이다. 이를 위해 본 논문은 병렬 삽입 기법을 제안하였다. 병렬 삽입은 노드 분할 오버헤드가 없으며, 데이타 복구 단계와 인덱스 구축 단계를 병렬로 수행할 수 있는 장점이 있다. 병렬 삽입은 순차 삽입 및 일괄 삽입에 비해 $2{\sim}11$배의 성능 향상을 보였다.
Recently, greedy algorithm has received much attention as a cost-effective means to reconstruct the sparse signals from compressed measurements. Much of previous work has focused on the investigation of a single candidate to identify the support (index set of nonzero elements) of the sparse signals. Well-known drawback of the greedy approach is that the chosen candidate is often not the optimal solution due to the myopic decision in each iteration. In this paper, we propose a tree search based sparse signal recovery algorithm referred to as the tree search matching pursuit (TSMP). Two key ingredients of the proposed TSMP algorithm to control the computational complexity are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In numerical simulations of Internet of Things (IoT) environments, it is shown that TSMP outperforms conventional schemes by a large margin.
본 논문의 공간색인을 사용하여 RFID 태그를 관리하는 태그색인 기법을 제안한다. 재고 관리 등에 사용되는 태그는 리더에 의해 위치가 결정된다. 즉, 태그가 부착된 제품이 리더에 인식됨으로써 제품의 위치가 생성되어 추적이 가능하다. 본 논문은 RFID 태그가 부착된 제품을 관리하는 혼합태그색인(hTag-tree: Hybrid Tag index)을 제안한다. hTag-tree는 태그의 특성을 반영하여 빠른 검색이 가능하도록 제안하는 새로운 색인이며 리더의 공간좌표를 이용하여 태그를 관리하는 태그 인덱스이다. 본 제안 색인은 동적환경에서 태그의 삽입, 삭제, 갱신에서 빠른 노드접근이 가능하며, 기존 기법에 비해 태그 검색시 노드접근 횟수를 최소화한다. 또한 기존 태그색인에서 MBR의 확장으로 인하여 조상 노드를 접근함으로써 탐색성능이 저하되는 것을 방지하였다. 제안한 색인의 실험은 태그 인덱스인 Fixed Interval R-tree와 기존의 공간색인인 R-tree를 비교 하였으며 결과적으로 데이터 탐색을 위한 노드접근횟수와 검색 시간에 있어서 hTag-tree가 더 향상된 시간을 나타낸다. 이는 제안 색인을 이용하면 다량의 RFID 태그를 보다 효율적으로 관리할 수 있다는 사실을 보여주고 있는 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.