• Title/Summary/Keyword: Treatment process

Search Result 10,101, Processing Time 0.043 seconds

Analysis of RCSTP Wastewater Characteristics and Installed Treatment Process in Bong-Hwa Gun (봉화군에 도입된 마을하수도 하수 특성 및 처리 공법 분석)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.453-460
    • /
    • 2013
  • Rural area sewage distribution rate is 40 % less than urban area. Previous research results announced that one of the reason in water resource pollution was caused of low rural area sewage distribution rate. Analysis on operation result of 11 RCSTP in Bong-hwa area which is located at the upper region of An-dong Dam and Im-ha Dam. Based on operation result, an analysis on characteristics of wastewater in Bong-hwa and treatment efficiency of installed treatment process was conducted. The wastewater influent of Bong-hwa contained high organic matter and nutrient than those of urban area. Treatment process showed totally stable treatment efficiency. But, The treatment efficiency for nutrient showed high fluctuation. This result means which is need to operation condition control of nutrient treatment when operating RCSTP.

A Qualitative Study on the Treatment Process Experiences of Patients with Whiplash Associated Disorder Treated with Traditional Korean Medicine - Based on the Grounded Theory Approach - (교통사고 상해 증후군 환자들에 대한 한의치료 경험의 질적 연구 -근거이론 접근방법으로 -)

  • Im, Se Hoon;Lee, Seung Hoon;Lee, Seung Min;Nam, Dong Woo;Kim, Yong Suk
    • Journal of Acupuncture Research
    • /
    • v.33 no.4
    • /
    • pp.73-92
    • /
    • 2016
  • Objectives : The purpose of this study is to understand the treatment process experiences of patients with whiplash associated disorder treated with Traditional Korean Medicine. Methods : This study was based on grounded theory. We recruited a total of 10 participants between the ages of 19 and 65, who were hospitalized at Kyung Hee University Korean Medicine Hospital and received treatment after traffic accidents from January to October 2014. Data was collected from in-depth interviews and notes, and was analyzed using open coding, axial coding and selective coding. Results : The core category of the phenomenon: 'The experiences of the treatment process for patients with whiplash associated disorder treated with Traditional Korean Medicine', was elicited as 'The selection of Traditional Korean Medicine treatment over other treatments for holistic healing that supplement for the deficiencies of Western medical treatment'. Conclusion :' The experiences of treatment process for patients with whiplash associated disorder treated with Traditional Korean Medicine', was elicited as 'The selection of the Traditional Korean Medicine treatment over other treatments for holistic healing that complements deficiency of the Western medical treatment'.

A Study on the Optimal Control Algorithms for the Advanced Wastewater Treatment Process with Variable Hydrodynamic Flow Patterns (유로 변경식 고도하수처리 공정의 최적 제어 알고리즘에 관한 연구)

  • Kang, Seong-Wook;Cho, Wook-Sang;Huh, Hyung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.217-225
    • /
    • 2005
  • Because of the limitation of controllable operation variables for the wastewater treatment process with variable hydrodynamic flow patterns, it may preclude the use of this type of nutrient removal activated sludge process. As the operation variables, only temperature and dissolved oxygen (DO) have been used to operate the process. This study made an effort to improve treatment efficiency and operability of the process by the following methodologies: 1) process and operation data analysis using process simulation, 2) determination of optimal control logic or algorithm using a pilot-scaled experimental apparatus and its operations, and 3) application of experimental and simulation results to find the optimal process operation modes. In this study, it was found that the optimal operation mode named 'save mode' in the basis of process variables, such as the ammonia-nitrogen concentration of inlet flow, temperature and flow rate, can reduce the operation cost comparing with the present normal operation mode. And the stable conditions in nitrification were also shown by the proportional control of DO with the inlet air flow rate of blower and the mixing rate of mechanical aeration.

Recovery of Xylo-oligomer and Lignin Liquors from Rice Straw by Two 2-step Processes Using Aqueous Ammonia Followed by Hot-water or Sulfuric Acid

  • Vi Truong, Nguyen Phuong;Shrestha, Rubee koju;Kim, Tae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.682-689
    • /
    • 2015
  • A two-step process was investigated for pretreatment and fractionation of rice straw. The two-step fractionation process involves first, soaking rice straw in aqueous ammonia (SAA) in a batch reactor to recover lignin-rich hydrolysate. This is followed by a second-step treatment in a fixed-bed flow-through column reactor to recover xylo-oligomer-rich hydrolysate. The remaining glucan-rich solid cake is then subjected to an enzymatic process. In the first variant, SAA treatment in the first step dissolves lignin at moderate temperature (60 and $80^{\circ}C$), while in the second step, hot-water treatment is used for xylan removal at higher temperatures ($150{\sim}210^{\circ}C$). Under optimal conditions ($190^{\circ}C$ reaction temperature, 30 min reaction time, 5.0 ml/min flow rate, and 2.3 MPa reaction pressure), the SAA-hot-water fractionation removed 79.2% of the lignin and 63.4% of the xylan. In the second variant, SAA was followed by treatment with dilute sulfuric acid. With this process, optimal treatment conditions for effective fractionation of xylo-oligomer were found to be $80^{\circ}C$, 12 h reaction time, solid-to-liquid ratio of 1:12 in the first step; and 5.0 ml $H_2SO_4/min$, $170^{\circ}C$, and 2.3 MPa in the second step. After this two-step fractionation process, 85.4% lignin removal and 78.9% xylan removal (26.8% xylan recovery) were achieved. Use of the optimized second variant of the two-step fractionation process (SAA and $H_2SO_4$) resulted in enhanced enzymatic digestibility of the treated solid (99% glucan digestibility) with 15 FPU (filter paper unit) of CTec2 (cellulase)/g-glucan of enzyme loading, which was higher than 92% in the two-step fractionation process (SAA and hot-water).

VOCs Removal in Drinking Water Treatment Process by Ozonation (오존산화에 의한 수처리공정에서 VOCs의 제거 특성)

  • Han, Myung-Ho;Choi, Joon-Ho;Lim, Hak-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.65-75
    • /
    • 1997
  • Removal characteristics of volatile organic carbons(VOCs) by ozone oxidation and other processes in the raw water of the 1st Nakdong water treatment plant were investigated. Dichrolomethane, toluene and other 7 compounds were detected in the raw water. With regard to detected 4 compounds in finally treated water, it was found that VOCs could not be removed effectively by traditional water treatment process. Benzene, 1,2-dichlorobenzne were not detected in the raw water but they were detected in the process of treatment. The compound of highest detection frequency was dichloromethane. When the raw water was controlled at pH 7, temperature $20^{\circ}C$, 5 minutes as contact time, 10 minutes as reaction time, the removal rate of THMFP, $KMnO_4$ demand, TOC, $UV_{254nm}$ and $NH_3-N$ were 46.4%, 22%, 19.6%, 31% and 8%, respectively. From estimating the finally treated water qualities in 7 kinds of treatment processes, P-6 process(raw water-chlorination-coagulation-ozonation) was most effective for organics removal and THMs control. Removal efficiencies for $KMnO_4$ demand and TOC by the process which combined preozonation with coagulation was twice better than only preozonation. $NH_3-N$ removal rate was shown as 10% by P-3 process(raw water-coagulation-ozonation), but 83% of $NH_3-N$ was removed by P-4 process(raw water-coagulation-chlorination). It was found that the chlorination is more effective than the ozonation for the NH3-N removal as commonly known.

  • PDF

PYROPROCESSING TECHNOLOGY DEVELOPMENT AT KAERI

  • Lee, Han-Soo;Park, Geun-Il;Kang, Kweon-Ho;Hur, Jin-Mok;Kim, Jeong-Guk;Ahn, Do-Hee;Cho, Yung-Zun;Kim, Eung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.317-328
    • /
    • 2011
  • Pyroprocessing technology was developed in the beginning for metal fuel treatment in the US in the 1960s. The conventional aqueous process, such as PUREX, is not appropriate for treating metal fuel. Pyroprocessing technology has advantages over the aqueous process: less proliferation risk, treatment of spent fuel with relatively high heat and radioactivity, compact equipment, etc. The addition of an oxide reduction process to the pyroprocessing metal fuel treatment enables handling of oxide spent fuel, which draws a potential option for the management of spent fuel from the PWR. In this context, KAERI has been developing pyroprocessing technology to handle the oxide spent fuel since the 1990s. This paper describes the current status of pyroprocessing technology development at KAERI from the head-end process to the waste treatment. A unit process with various scales has been tested to produce the design data associated with the scale up. A performance test of unit processes integration will be conducted at the PRIDE facility, which will be constructed by early 2012. The PRIDE facility incorporates the unit processes all together in a cell with an Ar environment. The purpose of PRIDE is to test the processes for unit process performance, operability by remote equipment, the integrity of the unit processes, process monitoring, Ar environment system operation, and safeguards related activities. The test of PRIDE will be promising for further pyroprocessing technology development.

A Study on Removal of Natural Organic Matter (NOM) and Application of Advanced Water Treatment Processes for Controlling Disinfection By-Products (소독부산물 제어를 위한 자연유기물(NOM) 제거와 고도정수처리공정 적용에 관한 연구)

  • Kim, Hyun Gu;Eom, Han Ki;Lee, Dong Ho;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.563-568
    • /
    • 2015
  • Natural Organic Matter (NOM) is a precursor of disinfection by products. Recently, with the increase in NOM concentration caused by a large amount of algae, the creation of disinfection by-products is becoming a big issue. Therefore, in this study, PAC+Membrane+F/A hybrid process was organized to control disinfection by-products in small-scale water treatment plants. The optimal dosage of PAC was set at 20 mg/L through Lab. scale test. Also, it is judged that NOM concentration must be less than 1.0 mg/L to meet the recommended criteria of drinking water quality monitoring items of disinfection by-products during chlorination. The existing conventional water treatment process was compared to the independent F/A process and the PAC+Membrane+F/A hybrid process through pilot plant operation, and the result showed that there is a need to apply an advanced water treatment process to remove not only NOMs but also Geosmin caused by algae. Accordingly, it is considered that applying the PAC+Membrane+F/A process will help in controling a clogged filter caused by a large amount of algae and disinfection by-products created by chlorination and can be used as an advanced water treatment process to meet the recommended criteria of drinking water quality monitoring items.

Removal of High Strength Nitrogen in Dyeing Wastewater by Decomposition-Air Stripping Process (분해탈기법에 의한 염색폐수 중의 고농도 질소 제거에 관한 연구)

  • Cho, Byeung-Rak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.213-218
    • /
    • 2002
  • Total nitrogen is a major pollutant which mostly causes eutrophication and red tide. Wastewater effluent from printing of cotton-viscose rayon containing high concentrations of total nitrogen can not be effectively treated with a typical biological treatment process. This paper provides a new treatment process and experimental results for the removal of high strength nitrogen from dyeing wastewater. The optimum conditions of air stripping for the removal of total nitrogen include around pH 12, temperature $60^{\circ}C$ with 60 minutes of stripping time. In case of a filtration-air stripping process, an initial level ($500mg/{\ell}$) of total nitrogen was significantly reduced to below $60mg/{\ell}$. Deconite was synthesised for further decomposition of organic nitrogen. Thus, a filtration-decomposition-air stripping process was possibly achieved, by which a high level ($900mg/{\ell}$) of total nitrogen was effectively removed to below $60mg/{\ell}$ P. Finally, a continuous new process for the removal of total nitrogen is proposed and confirmed, based on batch experimental results, and its process validity is further discussed throughout.

  • PDF

Manufacturing Process Design of Aluminum Alloy Bolt (알루미늄 합금 볼트의 제조 공정 설계)

  • Kim, Ji-Hwan;Chae, Soo-Won;Han, Seung-Sang;Son, Yo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.63-68
    • /
    • 2010
  • The use of aluminum alloy parts in the automotive industry has been increasing recently due to its low weight compared with steel to improve fuel efficiency. Companies in the auto parts' manufacturing sector are expected to meet the government's strict environmental regulations. In this study, manufacturing process of aluminum alloy bolt has been designed from forming to heat treatment. Bolt forming process is composed of cold forging for body and rolling for thread. In this study only cold forging process is considered by employing the finite element method. In the cold forging process, preform shape was designed and damage value was considered for die design. Two steps of forging process has been developed by the simulation and a prototype was manugactured accordingly. As a final process, solution heat treatment and aging process was employed. A final prototype was found to meet the required specifications of tensile strength and dimension.

Development of Wastewater Treatment Process Simulators Based on Artificial Neural Network and Mass Balance Models (인공신경망 및 물질수지 모델을 활용한 하수처리 프로세스 시뮬레이터 구축)

  • Kim, Jungruyl;Lee, Jaehyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.427-436
    • /
    • 2015
  • Developing two process models to simulate wastewater treatment process is needed to draw a comparison between measured BOD data and estimated process model data: a mathematical model based on the process mass-balance and an ANN (artificial neural network) model. Those two types of simulator can fit well in terms of effluent BOD data, which models are formulated based on the distinctive five parameters: influent flow rate, effluent flow rate, influent BOD concentration, biomass concentration, and returned sludge percentage. The structuralized mass-balance model and ANN modeI with seasonal periods can estimate data set more precisely, and changing optimization algorithm for the penalty could be a useful option to tune up the process behavior estimations. An complex model such as ANN model coupled with mass-balance equation will be required to simulate process dynamics more accurately.