• Title/Summary/Keyword: Treadmill exercise

Search Result 473, Processing Time 0.029 seconds

Impact Shock Components and Attenuation in Flat Foot Running (편평족 달리기 시 충격 쇼크의 성분과 흡수)

  • Ryu, Ji-Seon;Lim, Ga-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.283-291
    • /
    • 2015
  • Objective : The purpose of this study was to determine the differences in the head and tibial acceleration signal magnitudes, and their powers and shock attenuations between flat-footed and normal-footed running. Methods : Ten flat-footed and ten normal-footed subjects ran barefoot on a treadmill with a force plate at 3.22m/s averaged from their preferred running speed using heel-toe running pattern while the head and tibial acceleration in the vertical axis data was collected. The accelerometers were sampled at 2000 Hz and voltage was set at 100 mv, respectively. The peak magnitudes of the head and tibial acceleration signals in time domain were calculated. The power spectral density(PSD) of each signal in the frequency domain was also calculated. In addition to that, shock attenuation was calculated by a transfer function of the head PSD relative to the tibia PSD. A one-way analysis of variance was used to determine the difference in time and frequency domain acceleration variables between the flat-footed and normal-footed groups running. Results : Peaks of the head and tibial acceleration signals were significantly greater during flat-footed group running than normal-footed group running(p<.05). PSDs of the tibial acceleration signal in the lower and higher frequency range were significantly greater during flat-footed running(p<.05), but PSDs of the head acceleration signal were not statistically different between the two groups. Flat-footed group running resulted in significantly greater shock attenuation for the higher frequency ranges compared with normal-footed group running(p<.05). Conclusion : The difference in impact shock magnitude and frequency content between flat-footed and normal-footed group during running suggested that the body had different ability to control impact shock from acceleration. It might be conjectured that flat-footed running was more vulnerable to potential injury than normal-footed running from an impact shock point of view.

Development of Herbal Drink to Improve Aerobic Capacity in Elite Endurance Runners (건각탕(健脚湯) 섭취가 엘리트 장거리 달리기 선수의 유산소성 능력 향상에 미치는 영향)

  • Lee, Jeong-Pil;Jung, Hee-Jung;Ahn, Kyoo-Seok;Oh, Jae-Keun;Choe, Yeong-Jin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.563-571
    • /
    • 2006
  • The purpose of this study was to identify the effects of oriental herbal drink to improve aerobic capacity in elite endurance runners. 14 male elite college runners were participated and divided into two group; i ) oriental herbal drink group (OG), ii ) placebo group (PG). All subjects were completed treadmill exercise protocol using GXT at before (B) and after (A) experimental treatment of one week. The V02max, anaerobic threshold (AT) were measured by gas analysis and heart rate (HR) were measure by polar system at pre, max, post, post 30 min and post 60 min. Blood samples were collected to analyze blood components. The V02max were significantly increased in OGA compared to OGB whereas the V02max and AT in OGA were significantly higher than PGA. The blood lactate concentration were shown higher decrease rate in OGA compared to Doth OGB and PGA during recovery whereas LDH and Na were significantly increased in OGA compared to both OGB and PGA. The blood concentrations of CI and K were significantly increased in OGA compared to PGA. There were no significant differences were founded in WBC, RBC, Hct, Hb and other components associated with energy sources(glucose, TG, TC, HDL, LDL, creatinine, CPK). These results suggested that this oriental herbal drink can be administrated to improve aerobic capacity in long distance runners.

Complexity Pattern of Center of Pressure between Genders via Increasing Running Speed (달리기 속도 증가에 따른 성별 CoP (Center of Pressure)의 복잡성 패턴)

  • Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Objective: The goal of this study was to determine the center of pressure (CoP) complexity pattern in approximate entropy technique between genders at different conditions of running speed. Background: It is conducted to evaluate the complexity pattern of CoP in the increment of running speed to have insights to injury prediction, stability, and auxiliary aids for the foot. Method: Twenty men (age=22.3±1.5 yrs.; height=176.4±5.4 cm; body weight=73.9±8.2 kg) and Twenty women (age=20.8±1.2 yrs.; height=162.8±5.2 cm; body weight=55.0±6.3 kg) with heel strike pattern were recruited for the study. While they were running at 2.22, 3.33, 4.44 m/s speed on a treadmill (instrumented dual belt treadmills, USA) with a force plate, CoP data were collected for the 10 strides. The complexity pattern of the CoP was analyzed using the ApEn technique. Results: The ApEn of the medial-lateral and antero-posterior CoP in the increment of running speed showed significantly difference within genders (p<.05), but there were not statistically significant between genders at all conditions of running speed. Conclusion: Based on the results of this study, CoP complexity pattern in the increment of running speed was limited to be characterized between genders as an indicator to judge the potential injury and stability. Application: In future studies, it is needed to investigate the cause of change for complexity of CoP at various running speed related to this study.

Heart Rate Recovery in Metabolically Healthy Obesity and Metabolically Unhealthy Obesity Korean Adults

  • Shin, Kyung-A
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.245-252
    • /
    • 2018
  • Heart rate recovery (HRR) is simply an indicator of autonomic balance and is a useful physiological indicator to predict cardiovascular morbidity and mortality. The purpose of this study was to compare the differences in HRR between metabolically healthy obesity group and metabolically unhealthy obesity and to ascertain whether heart rate recovery is a predictor of metabolic syndrome. Metabolic syndrome was defined according to the standards of the National Cholesterol Education Program Adult Care Panel III. Obesity was assessed according to WHO Asian criteria. It was classified into three groups of metabolically healthy non-obesity group (MHNO, n=113), metabolically healthy obesity group (MHO, n=66), metabolically unhealthy obesity (MUO, n=18). Exercise test was performed with Bruce protocol using a treadmill instrument. There was no difference in HRR between MHO and MUO ($32.71{\pm}12.25$ vs $25.53{\pm}8.13$), but there was late HRR in MUO than MHNO ($25.53{\pm}8.13$ vs $34.51{\pm}11.80$). HRR in obese was significantly correlated with BMI (r=-0.342, P=0.004), waist circumference (r=-0.246, P=0.043), triglyceride (r=-0.350, P=0.003), HbA1c (r=-0.315, P=0.009), insulin (r=-0.290, P=0.017) and uric acid (r=-0.303, P=0.012). HRR showed a lower prevalence of abdominal obesity, hypertriglyceridemia, and low HDL-cholesterol in the third tertile than in the first tertile. In conclusion, MHO had no difference in vagal activity compared with MHNO, but MUO had low vagal activity. HRR is associated with metabolic parameters and is a useful predictor of abdominal obesity, hypertriglyceridemia, and low HDL-cholesterolemia.

Effects of Muscle Activation Pattern and Stability of the Lower Extremity's Joint on Falls in the Elderly Walking -Half a Year Prospective Study- (노인 보행 시 하지 근 활동 양상과 관절의 안정성이 낙상에 미치는 영향 -전향적 연구(Prospective Study)-)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.79-88
    • /
    • 2019
  • Objective: The aim of this study was to determine the peak torques of the knee and ankle joint and local stability of the lower extremity's joints, and muscle activation patterns of the lower extremity's muscles between fallers and non-fallers in the elderly women during walking. Method: Four elderly women (age: $74.5{\pm}5.2yrs.$; height: $152.1{\pm}5.6cm$; mass: $55.3{\pm}5.4kg$; preference walking speed: $1.19{\pm}0.06m/s$) who experienced falls within six months since experiment had been conducted (falls group) and thirty-six subjects ($74.2{\pm}3.09yrs.$; height: $153.6{\pm}4.9cm$; mass: $56.7{\pm}6.4kg$; preference walking speed: $1.24{\pm}0.10m/s$) who had no experience in falls (non-falls group) within this periods participated in this study. They were measured torque peaks of the knee and ankle joint using a Human Norm and while they were walking on a treadmill at their natural pace, kinematic variables and EMG signals were collected with using a 3-D motion capture system and a wireless EMG system, respectively. Lyapunov Exponent (LyE) was determined to observe the dynamic local stability of the lower extremity's joints, and muscles activation and their co-contraction index were also analysed from EMG signals. Hypotheses between falls and non-falls group were tested using paired t-test and Mann-Whitey. Level of significance was set at p<.05. Results: Local dynamic stability in the adduction-abduction movement of the knee joint was significantly lower in falling group than non-falling group (p<.05). Conclusion: In conclusion, muscles which act on the abduction-adduction movement of the knee joint need to be strengthened to prevent from potential falls during walking. However, a small number of samples for fallers make it difficult to generalize the results of this study.

Complexity Comparison of Center of Pressure between Fallers and Non-fallers during Gait (보행 시 낙상 유무에 따른 압력중심점의 복잡성 비교)

  • Park, Sang Kyoon;Ryu, Sihyun;Kim, Jongbin;Yoon, Sukhoon;Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.113-119
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the effect of the falls on the center of pressure (CoP) complexity during gait using non-linear approximate entropy (ApEn). Method: 20 elderly women with experience of falling ($age=72.55{\pm}5.42yrs$; $height=154.40{\pm}4.26cm$; $body\;weight=57.40{\pm}6.21kg$; $preferred\;gait\;speed=0.52{\pm}0.17m/s$) and 20 elderly women with no experience of falling ($age=71.90{\pm}2.90yrs$; $height=155.28{\pm}4.73cm$; $body\;weight=56.70{\pm}5.241kg$; $preferred\;gait\;speed=0.56{\pm}0.13m/s$) were recruited for the study. While they were walking at their preferred gait speed on a treadmill (instrumented dual belt treadmills, Bertec, USA) with a force plate CoP data were collected for the 20 strides. The complexity of the CoP was analyzed using the ApEn technique. Results: The ApEn of the medial-lateral CoP in the fallers showed smaller about 16% compared to the non-fallers (p<.05). The ApEn of the antero-posterior CoP of the fallers showed smaller about 12% compared to the non-fallers, but the difference was not statistically significant. Conclusion: Based on the results of this study, the reduction of the medio-lateral CoP complexity in the elderly gait would be an index to determine the potential fall.

The Effect of Cushion Insole on the Flexibility and Exercise Ability of Lumbar Spinal Stenosis (쿠션인솔이 요추 척추관협착증 환자의 유연성 및 운동능력에 미치는 영향)

  • Kim, Hyun Taeg;Moon, Sang Ho;Kim, Kyung Chul;Kwon, Byong An
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.423-432
    • /
    • 2019
  • The purpose of this study was to investigate the effect of cushion insole on lumbar flexibility and motor fitness in patients with lumbar spinal stenosis. 26 patients with lumbar spinal stenosis were randomly assigned to the experimental group 13 and the control group 13. Volunteers were allowed to wear cushioned insoles for two hours a day for six weeks. The experimental group was 8 mm and the control group was 4 mm, wearing a cushion insole as a blinded experiment. There was a significant increase(p<0.05) in the flexion test of the experimental group ($3.38{\pm}3.12$), but not statistically significant in the other tests(p>0.05). In conclusion, cushion insole was not suitable for intervention for lumbar spinal stenosis. There is a need to study the height and material of the insoles in the future.

EMS socks for Preventing Ankle Injuries during Home Training -Focusing on Men in Their Late 20s- (홈트레이닝 시 발목 부상 예방을 위한 EMS 양말 효과 - 20대 후반 남성을 중심으로 -)

  • Song, Kwanwoo;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.26 no.4
    • /
    • pp.112-122
    • /
    • 2022
  • The purpose of this study is to investigate the effect of using socks combined with EMS on ankle pain reduction and ankle function improvement in home training participants. In this study, the conductive fabric was combined using socks that can properly compress the ankle. First, VAS was measured during EMS training after fatigue was induced and compared with fatigue during rest. It was confirmed that the level of VAS after EMS training was lower than after rest and fatigue. It was also confirmed that EMS training, which combines EMS with socks, was effective in reducing pain. The experimental action is a measurement action of WBLT and lying posture, and the situation before and after EMS training was compared by performing 30 minutes on the treadmill to cause delayed muscle pain during exercise. As a result of this study, it was found that pain reduction and ROM function were improved when electrical stimulation was performed using EMS socks. It was also confirmed that the application of electrical stimulation to EMS socks effected on ankle fatigue and function improvement. From the study results, it is expected that wearing socks equipped with EMS significantly reduces ankle injuries and improves functional recovery for home training participants.

The Effect of Microcurrent Application on Muscle Fatigue of Pes Planus during Gait (미세전류 적용이 편평족을 가진 사람들의 보행근육 피로도에 미치는 영향)

  • Lee, Dae-Hwan;Son, Ho-Hee;Park, Soo-Jin;Kim, Jin-Sang;Kim, Kyoung
    • Journal of Korean Physical Therapy Science
    • /
    • v.18 no.2
    • /
    • pp.51-62
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effect of microcurrent on fatigue of muscles in people who were flat-footed during gait. Methods: 10 flat-footed university students volunteered to participate in this study. 10 flat-footed subjects were divided into 2 groups, one group was experimental group of 5subjects(This group put on microcurrent induction shoes but the subjects were not able to feel the current.) and the other group was the control group of 5subjects(This group put on the general shoes which were similar in shape but microcurrent was not induced.) to perform double blind test and random sampling. Their gait muscle fatigue of 6 regions (vastus medialis, gastrocnemius, tibialis anterior, biceps femoris, erector spinae, and rectus abdominis muscle.) was measured by EMG MP150, Delsys Inc Boston, USA during walking and then they carried out the Harvard step with a platform (It was a arbitrarily made wooden platform of 100cm long, 50cm wide, 60cm high. They carried out climbing it for one second and descending it for one second by using the Metronome program, total 5minutes) for 5minutes. Right after that, the subjects walked on a treadmill at a speed of 4km/h for 10minutes and then their gait muscle fatigue of 6regions was assessed while they were walking on the ground as equally as before exercise. Results: The experimental group has resulted in lower average differences in gait muscle fatigue before and after exercise than those of the control group average 12.24Hz(P=0.009) at vastus medialis, average 8.52Hz(P=0.016) at gastrocnemius, average 9.16Hz(P=0.009) at tibialis anterior, average 8.66Hz(P=0.047) at biceps femoris, average 7.53Hz(P=0.016) at erector spinae, and average 7.80Hz(P=0.047) at rectus abdominis. All of the assessments of muscles have shown significant difference statistically. Conclusions: This result has shown that the use of micro current could decrease gait muscle fatigue of flat-footed people. It is recommended to use a microcurrent to reduce their gait muscle fatigue.

  • PDF

Effect of periodic weight support on Type I muscle of developing suspended rats. - Animal experiment for nursing inter- vention of muscle atrophy in children - (주기적인 체중지지가 발달중인 뒷다리부유쥐의 Type I 근육에 미치는 효과 -하지근 위축환아의 간호중재 개발을 위한 동물실험 -)

  • 최명애;지제근
    • Journal of Korean Academy of Nursing
    • /
    • v.23 no.2
    • /
    • pp.207-223
    • /
    • 1993
  • Inpatients are mostly occupied in bed with restricted activity, nearly all patient populations are at risk for the occurrence of skeletal muscle atrophy due to decreased level of activity. Restriction of mobility is far greater in pediatric patients compared with adult patients since almost all the activities of daily living is performed by parents or caregivers. It could be assumed that pediatric patients are more vulnerable to skeletal muscle atrophy than adult patients, however, there have been no attempts to reduce the atrophy of developing muscle. Therefore it is important to determine the effect of exercise in developing muscle during decreased activity. The purpose of this study was to determine the effect of periodic weight support during hindlimb suspension on the mass and cross-sectional area of Type I and II fibers in developing soleus(Type I ) muscle. To examine the effectiveness of periodic weight support activity in maintaining mass and fiber size. the hindlimb of young female Wistar rats was suspended(HS) and half of these rats walked on a treadmill for 45min / day(15min every 4h) at 5m / min at a 15 grade(HS-WS). After 7days of hindlimb suspension, soleus wet weight was 28. 57% smaller and relative soleus weight was 28. 21% smaller in comparison with con-trol rats (p〈0.05) Soleus wet weight and relative soleus weight increased by 67.72% and 71.43% each with periodic weight support activity during hindlimb suspension (p〈0.01, p〈0.005), moreover soleus wet weight and relative soleus weight of the HS -WS rats were greater than those of the control group. No change was observed in fiber type percentage of the developing soleus muscle after 1 week of hindlimb suspension plus weight support activity. Type I and II fiber cross-sectional areas of the developing soleus muscle were 50.45% and 43.39% lower in the HS group than in the control group (p〈0.0001), type I and II fiber cross-sectional areas of the developing soleus were 24.49% and 29.93% greater in the HS - WS group than in the HS rats (p〈0.0001), whereas Type I and II fiber cross-sectional areas of HS - WS group were less than those of the control group, The results suggest that periodic weight support activity can ameliorate developing soleus muscle atrophy induced by hindlimb suspension, even in type II fibers that would not have been expected to be recruited by this type of neuromuscular demand. Clinical experimental study is needed to deter-mine the effect of periodic weight bearing exercise on developing atrophied leg muscle based on these results.

  • PDF