• Title/Summary/Keyword: Treadmill exercise

Search Result 473, Processing Time 0.044 seconds

Developing Liquid Cooling Garments to Alleviate Heat Strain of Workers in Summer and Exploring Effective Cooling Temperature and Body Regions (여름철 작업자들의 고체온증 예방을 위한 액체냉각복 개발 및 효과적인 냉각온도와 인체 냉각부위 탐색)

  • Jung, Jae-Yeon;Kang, Juho;Seol, Seonhong;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.250-260
    • /
    • 2020
  • The purpose of the present study was to explore the most effective body region and cooling temperature to alleviate heat strain of workers in hot environments. We developed liquid cooling hood, vest, sleeves and socks and applied the water temperatures of 10, 15, 20, and 25℃ through the liquid cooling garments in a hot and humid environment (33℃ air temperature and 70% RH air humidity). A healthy young male participated in a total of 16 experimental trials (four cooling garments × four cooling temperatures) with the following protocol: 10-min rest, 40-min exercise on a treadmill and 10-min recovery. The results showed that rectal temperature, mean skin temperature, and ratings of perceived exertion during exercise; heart rate and diastolic blood pressure during recovery; and total sweat rate were lower for the vest condition than other garment conditions(p < .05). However, there was no differences in mean skin temperature among the four cooling garments when we compared the values converted by covering area(%BSA). When we classified the results by cooling temperature, there were no consistent differences in thermoregulatory and cardiovascular responses among the four temperatures, but 25℃ water temperature was evaluated as being the most ineffective cooling temperature in terms of subjective responses. In conclusion, the results indicated that wearing cooling vest with < 20℃ cooling temperature can alleviate heat strain of workers in hot and humid environments. If the peripheral body regions are cooled with liquid cooling garments, larger cooling area with lower cooling temperature than 10℃ would be effective to reduce heat strain of workers. Further studies with a vaild number of subjects are required.

Design and Evaluation of Blending Algorithm for Rate Adaptive Pace: Simulation Study (심박수 적응형 심박 조율 알고리즘 설계 및 평가: 시뮬레이션 연구)

  • Myoung, Hyoun-Seok;Lee, Kyoung Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.32-37
    • /
    • 2019
  • In this study, we designed a blending algorithm for rate adaptive pacing for cardiac pacemaker. Generally, rate adaptive pacing (RAP) is applied to patients whose heart rate does not rise during exercise for chronotropic incompetence (CI) patient. It is very important to develop an algorithm for RAP that can be properly applied to CI patients. In order to design an RAP algorithm we used dual sensors. Firstly, we designed a bio-signal measurement system based on the dual sensors, which are accelerometer and respiratory system. Secondly, we conducted treadmill test for the simulation experiment while using 3-lead ECG as reference. Finally, we designed a blending algorithm based on activation state of the dual sensors. The proposed blending algorithm was subdivided into three sections based on the accelerometer signal, which are rapidly increased section (W1), hardly changed section (W2), and decreased section (W3). Each weight is set aside for each section. To evaluate this algorithm, ten healthy adult males were participated. The correlation and Root Mean Square Error between the proposed algorithm and the reference were compared, and shown to be r=0.88 and 2.82 bpm, respectively. These results show that the proposed blending algorithm of dual sensors enables proper tracking of the heart rate during exercise. Also, it shows the possibility that the proposed blending algorithm can be applied to improve quality of life of the chronotropic incompetence patient.

Comparison of the Impact of an Optimized Ice Cooling Vest and a Paraffin Cooling Vest on Physiological and Perceptual Strain

  • zare, Mansoor;dehghan, Habibollah;yazdanirad, Saeid;khoshakhlagh, Amir hossein
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.219-223
    • /
    • 2019
  • Background: Ice cooling vests can cause tissue damage and have no flexibility. Therefore, these two undesirable properties of ice cooling vest were optimized, and the present study was aimed to compare the impact of the optimized ice cooling vest and a commercial paraffin cooling vest on physiological and perceptual strain under controlled conditions. Methods: For optimizing, hydrogel was used to increase the flexibility and a layer of the ethylene vinyl acetate foam was placed into the inside layer of packs to prevent tissue damage. Then, 15 men with an optimized ice cooling vest, with a commercial paraffin cooling vest, and without a cooling vest performed tests including exercise on a treadmill (speed of 2.8 km/hr and slope of %0) under hot ($40^{\circ}C$) and dry (40 %) condition for 60 min. The physiological strain index and skin temperature were measured every 5 and 15 minutes, respectively. The heat strain score index and perceptual strain index were also assessed every 15 minutes. Results: The mean values of the physiological and perceptual indices differed significantly between exercise with and without cooling vests (P < 0.05). However, the difference of the mean values of the indices except the value of the skin temperature during the exercises with the commercial paraffin cooling vest and the optimized ice cooling vest was not significant (P > 0.05). Conclusions: The optimized ice cooling vest was as effective as the commercial paraffin cooling vest to control the thermal strain. However, ice has a greater latent heat and less production cost.

Effect of High-Intensity Interval Training on Acute Liver Failure Induced by D-Galactosamine/Lipopolysaccharide in Balb/c Mice (고강도 인터벌 트레이닝이 D-Gal/LPS로 유도된 마우스의 급성 간 부전에 미치는 효과)

  • Cho, Jin-Kyung;Park, Soo-Hyun;Kang, Hyun-Sik
    • Exercise Science
    • /
    • v.26 no.3
    • /
    • pp.223-228
    • /
    • 2017
  • PURPOSE: This study investigated the protective role of high-intensity interval training against acute liver injury induced by D-galactosamine (D-Gal)/lipopolysaccharide (LPS). METHODS: A total of 30 male BALB/c mice aged 5-week were randomly assigned to high-intensity, interval training group (EX, n=10) or control group in cage (Non-EX, n=20) for 10 weeks. Peritoneal injection of D-Gal (700 mg/kg body weight) and LPS ($10{\mu}g/kg$ body weight) was applied to induce acute liver injury, and liver tissue was harvested 6 hours after the injection. Hematoxylin and Eosin (H&E) staining was used for liver histology. Real-time PCR was used to quantify expression of pro-inflammatory and anti-inflammatory genes in the liver. RESULTS: The liver histology showed that D-Gal/LPS treatment resulted in hepatic damage and increased number of neutrophils in conjunction with upregulation of hepatic IL-6 and $TNF-{\alpha}$ mRNAs and downregulation of hepatic $PPAR{\alpha}$ and SIRT1 mRNAs. On the other hand, the 10-week interval training resulted in a significant improvement in cardiorespiratory fitness assessed as run time to exhaustion on a treadmill. In addition, the interval training attenuated the D-Gal/LPS-induced liver damage and increased number of neutrophil in conjunction with downregulation of hepatic IL-6 and $TNF-{\alpha}$ mRNAs and upregulation of hepatic $PPAR{\alpha}$ and SIRT1 mRNAs. CONCLUSIONS: This study suggests that high-intensity interval training suppresses the D-Gal and LPS-induced acute liver damage and inflammatory responses.

Effects of Wearing COVID-19 Protective Face Masks on Respiratory, Cardiovascular Responses and Wear Comfort During Rest and Exercise (휴식과 운동 중 COVID-19 대응 보건용 마스크 착용이 호흡·심혈관계 반응 및 착용감에 미치는 영향)

  • Jung, Jae-Yeon;Kang, ChanHyeok;Seong, Yuchan;Jang, Se-Hyeok;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.6
    • /
    • pp.862-872
    • /
    • 2020
  • This study explores the effects of facemasks on respiratory, thermoregulatory, cardiovascular responses during exercise on a treadmill and at rest. Five male subjects (25.8 ± 0.8 y, 171.8 ± 9.2 cm in height, 79.8 ± 28.1 kg in weight) participated in the following five experimental conditions: no mask, KF80, KF94, KF99, and N95. Inhalation resistance was ranked as KF80 < KF94 < N95 < KF99 and dead space inside a mask was ranked as KF80 = KF94 < N95 < KF99. The surface area covered by a mask was on average 1.1% of the total body surface area. The results showed no significant differences in body core temperature, oxygen consumption (VO2), carbon dioxide production (VCO2), heart rate or subjective perception among the five experimental conditions; however, cheek temperature, respiratory ventilation and blood pressure were greater for KF80 or KF94 conditions when compared to KF99 or N95 conditions (p<0.05). The differences among mask conditions are attributed to the dead space or specific designs (cup type vs pleats type) rather than the filtration level. In addition, the results suggest that improving mask design can help mitigate respiratory resistance from increased filtration.

Anti-fatigue effect of a cucumber vinegar beverage on rats after high-intensity exercise (고강도 운동을 실시한 흰쥐에 대한 오이식초음료의 항피로 효과)

  • Cho, Hyun Dong;Kim, Jeong Ho;Lee, Ju Hye;Hong, Seong Min;Yee, Sung Tae;Seo, Kwon Il
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.209-214
    • /
    • 2017
  • We evaluated the effect of cucumber vinegar (CV) on fatigue accumulation in rats that performed high-intensity exercise. The rats were randomly assigned to 3 groups: sedentary control (SC), exercise control (EC), and CV. Body weights were higher in groups EC and CV than in group SC. Organ weights in group CV did not differ from those in group SC. Running time was significantly longer in group CV than in the other groups. Compared to group EC, cucumber vinegar administration markedly decreased serum concentrations of ammonia, inorganic phosphate, and ${{\small}L}$-lactate. The activities of serum creatine kinase and lactate dehydrogenase were significantly lower in group CV than in groups SC and EC. Glycogen contents in the muscle and liver were higher in group CV than in groups SC and EC. These results suggest that cucumber vinegar can serve as a functional ingredient in the development of a beverage to attenuate fatigue.

Is Short-term Exercise a Therapeutic Tool for Improvement of Cardioprotection Against DOX-induced Cardiotoxicity? An Experimental Controlled Protocol in Rats

  • Ashrafi, Javad;Roshan, Valiollah Dabidi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4025-4030
    • /
    • 2012
  • Background and Objective: Cardiotoxicity and oxidative stress is a life-threatening side effect of doxorubicin (DOX). We investigate the effects of short-term exercise as therapeutic tool for improvement of cardioprotection against DOX-induced cardiotoxicity in the rat. Methods: Wistar males (weighing $257{\pm}28g$) were divided into six groups: (1) control+placebo (2) control+DOX $10mg.kg^{-1}$ (3) control+DOX $20mg.kg^{-1}$ (4) training+placebo (5) training+ DOX$10mg.kg^{-1}$ (6) training+DOX $20mg.kg^{-1}$. Cardiotoxicity was induced by DOX (10 and $20mg.kg^{-1}$). The rats in groups 4, 5 and 6 experienced treadmill running of 25 to $39min.day^{-1}$ and 15 to $17m.min^{-1}$, 5 days/wk for 3 wk. At the end of the endurance training program, rats in the 1 and 4 groups, in the 2 and 5 groups and in the 3 and 6 groups received saline solution, DOX $10mg.kg^{-1}$ and DOX $20mg.kg^{-1}$, respectively. Result: DOX administration (10 and $20mg.kg^{-1}$) caused significant increase in MDA and Apelin, an insignificant increase in NO and a significant decrease in SOD, as compared to the C+P group. Three weeks of the pretreatment endurance exercise resulted in a significant increase of Apelin and SOD, an insignificant increase of NO and an insignificant decrease of MDA, as compared to the C+P group. Furthermore, after three weeks of endurance training and DOX treatment with $10mg.kg^{-1}$ and $20mg.kg^{-1}$, a significant increase in apelin and SOD, and a significant decrease in MDA were detected in comparison to C+DOX10 and/or C+DOX20 groups. There was a significant difference between DOX$10mg.kg^{-1}$ and DOX$20mg.kg^{-1}$ treatments in MDA levels only. Conclusion: Pretreatment exercise may improve myocardial tolerance to DOX-induced cardiotoxicity by inhibition of oxidative stress and up-regulation of antioxidants in heart tissue.

Effects of maternal exercise on expression of GLUT-4, VAMP-2 in skeletal muscle and plasma insulin and leptin levels in pregnant rats (운동이 F344계 임신쥐에서 골격근의 VAMP-2 및 GLUT-4 단백질 발현과 혈중 인슐린, 렙틴 농도에 미치는 영향)

  • Yoon, Jin-Hwan;Lee, Hee-Hyuk;Kim, Jong-Oh;Oh, Myung-Jin;Park, Seong-Tae;Jee, Young-Seok;Seo, Tae-Beom;NamGung, Uk
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.859-866
    • /
    • 2007
  • The main objective of this study was to investigate the effects of exercise on serum insulin and leptin levels and GLUT-4 and VAMP-2 in skeletal muscles from the pregnant rats. F344 rats were randomly divided into four groups (n = 15 in each group): control group (CG), pregnant group (PG), pregnant running group (PR), and pregnant swimming group (PS). From the 15th day of pregnancy, animals in the running group were forced to run on treadmill for 30 min with a light intensity, while those in the swimming group were forced to swim in swimming pool for 10 min once a day for 6 consecutive days. The present result demonstrated that in pregnant rat group, serum insulin levels significantly in-creased and leptin levels significantly decreased. Skeletal GLUT-4 and VAMP-2 protein expression was significantly decreased in pregnant rats compared to non-pregnant rats. However, matenal running during gestational period alleviated pregnancy-induced changes in plasma insulin and leptin levels, and it significantly enhanced skeletal GLUT-4 and VAMP-2 protein expression. From those results, it can be suggested that running exercise during gestational period may improve glycemic control by up-regulating GLUT-4 and VAMP-2 protein expression.

Effects of insulin and exercise on glucose uptake of skeletal muscle in diabetic rats (당뇨병 흰쥐에서 운동부하가 시험관 실험에서 골격근의 당섭취에 미치는 영향)

  • Park, Jin-Hyun;Kim, Young-Woon;Kim, Jong-Yeon;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1990
  • The effects of insulin and exercise on glucose uptake of skeletal muscle were investigated in soleus muscle isolated from low dose streptozotocin induced diabetic rats in vitro. Glucose uptake was assessed by measuring $^3H$-methylglucose uptake in vitro. Basal glucose uptake in diabetes was reduced by approximately one-third of the control value($5.6{\pm}0.73{\mu}Mol$/g/20min. in diabetes versus $8.4{\pm}0.77$ in control, P<0.01). There was also a significant decrease(P<0.01) in glucose uptake of diabetes at physiologic insulin concentration ($200{\mu}IU$/ml) by 40% ($6.1{\pm}1.20$ versus $10.0{\pm}0.81$). Furthermore, maximal insulin($20000{\mu}IU$/ml)-stimulated glucose uptake was 36% lower in diabetes as compared with control($7.3{\pm}1.29$ versus $11.4{\pm}1.29$, P<0.01). In contrast, exercise(1.0km/hr, treadmill running for 45min.) effect on glucose uptake was so dramatic in diabetes that glucose uptake at basal state was 8.4+1.09 and insulin stimulated-glucose uptake were $10.2{\pm}1.47$ and $11.9{\pm}1.64$, in 200 and $20000{\mu}IU$/ml added insulin, respectively. These results suggest that insulin insensitivity develops in skeletal muscle after 2 weeks of streptozotocin-induced diabetes, but these insensitivity was recovered significantly by single session of running exercise.

  • PDF

Development of Personalized Exercise Prescription System based on Kinect Sensor (Kinect Sensor 기반의 개인 맞춤형 운동 처방 시스템 개발)

  • Woo, Hyun-Ji;Yu, Mi;Hong, Chul-Un;Kwon, Tae-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.593-605
    • /
    • 2022
  • The purpose of this study is to investigate the personalized treacmill exercise analysis using a smart mirror based on Kinect sensor. To evaluate the performance of the development system, 10 health males were used to measure the range of the hip joint, knee joint, and ankle joint using a smart mirror when walking on a treadmill. For the validity and reliability of the development system, the validity and reliability were analyzed by comparing the human movement data measured by the Kinect sensor with the human movement data measured by the infrared motion capture device. As a result of validity verification, the correlation coefficient r=0.871~0.919 showed a high positive correlation, and through linear regression analysis, the validity of the smart mirror system was 88%. Reliability verification was conducted by ICC analysis. As a result of reliability verification, the correlation coefficient r=0.743~0.916 showed high correlation between subjects, and the consistency for repeated measurement was also very high at ICC=0.937. In conclusion, despite the disadvantage that Kinect sensor is less accurate than the motion capture system, Kinect is it has the advantage of low price and real-time information feedback. This means that the Kinect sensor is likely to be used as a tool for evaluating exercise prescription through human motion measurement and analysis.