• Title/Summary/Keyword: Travelling salesman problem

Search Result 37, Processing Time 0.033 seconds

Solving the Travelling Salesman Problem Using an Ant Colony System Algorithm

  • Zakir Hussain Ahmed;Majid Yousefikhoshbakht;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.55-64
    • /
    • 2023
  • The travelling salesman problem (TSP) is an important combinatorial optimization problem that is used in several engineering science branches and has drawn interest to several researchers and scientists. In this problem, a salesman from an arbitrary node, called the warehouse, starts moving and returns to the warehouse after visiting n clients, given that each client is visited only once. The objective in this problem is to find the route with the least cost to the salesman. In this study, a meta-based ant colony system algorithm (ACSA) is suggested to find solution to the TSP that does not use local pheromone update. This algorithm uses the global pheromone update and new heuristic information. Further, pheromone evaporation coefficients are used in search space of the problem as diversification. This modification allows the algorithm to escape local optimization points as much as possible. In addition, 3-opt local search is used as an intensification mechanism for more quality. The effectiveness of the suggested algorithm is assessed on a several standard problem instances. The results show the power of the suggested algorithm which could find quality solutions with a small gap, between obtained solution and optimal solution, of 1%. Additionally, the results in contrast with other algorithms show the appropriate quality of competitiveness of our proposed ACSA.

Integer Programming Model to the Travelling Salesman Problems with Route Dependent Travel Cost (경로의존 이동 비용을 갖는 외판원 문제의 정수계획 모형)

  • Yu, Sung-Yeol
    • Management & Information Systems Review
    • /
    • v.29 no.4
    • /
    • pp.109-121
    • /
    • 2010
  • In this study, we propose a solution procedure to solve travelling salesman problem(TSP) with special cost function, route dependent travelling salesman problem(RDTSP). First, we develop an integer programming model to describe the problem. In the model, a variable means a possible route. And, the number of variables in this model are extremely large. So, we develop a LP relaxation problem of the IP model and solve the relaxation problem by a column generation technique. The relaxation problem does not guarantee the optimal solution. If we get an integer solution in the ralaxation problem, then the solution is an optimal one. But, if not, we cannot get an optimal solution. So, we approach a branch and price technique. The overall solution procedure can be applied a printed circuit board(PCB) assembly process.

  • PDF

Dynamic Programming Approach for Prize Colleting Travelling Salesman Problem with Time Windows (시간제약이 있는 상금 획득 외판원 문제에 대한 동적 계획 접근 방법)

  • Tae, Hyun-Chul;Kim, Byung-In
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.112-118
    • /
    • 2011
  • This paper introduces one type of prize collecting travelling salesman problem with time windows (PCTSPTW), proposes a mixed integer programming model for the problem, and shows that the problem can be reduced to the elementary shortest path problem with time windows and capacity constraints (ESPPTC). Then, a new dynamic programming algorithm is proposed to solve ESPPTC quickly. Computational results show the effectiveness of the proposed algorithm.

Self Organizing Feature Map Type Neural Computation Algorithm for Travelling Salesman Problem (SOFM(Self-Organizing Feature Map)형식의 Travelling Salesman 문제 해석 알고리즘)

  • Seok, Jin-Wuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.983-985
    • /
    • 1995
  • In this paper, we propose a Self Organizing Feature Map (SOFM) Type Neural Computation Algorithm for the Travelling Salesman Problem(TSP). The actual best solution to the TSP problem is computatinally very hard. The reason is that it has many local minim points. Until now, in neural computation field, Hopield-Tank type algorithm is widely used for the TSP. SOFM and Elastic Net algorithm are other attempts for the TSP. In order to apply SOFM type neural computation algorithms to the TSP, the object function forms a euclidean norm between two vectors. We propose a Largrangian for the above request, and induce a learning equation. Experimental results represent that feasible solutions would be taken with the proposed algorithm.

  • PDF

Code Optimization of DNA Computing for Travelling Salesman Problem (Travelling Salesman Problem을 위한 DNA 컴퓨팅의 코드 최적화)

  • Kim, Eun-Kyoung;Lee, Sang-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.323-326
    • /
    • 2002
  • DNA 컴퓨팅은 생체 분자들이 갖는 막대한 병렬성을 이용하여 조합 최적화 문제에 적용하는 연구가 많이 시도되고 있다. 특히 TSP(Travelling Salesman Problem)는 간선에 대한 가중치 정보가 추가되어 있기 때문에 가중치를 DNA 염기 배열로 표현하기 위한 효율저인 방법들이 제시되지 않았다. 따라서 본 논문에서는 DNA 컴퓨팅에 DNA 코딩 방법을 적용하여 정점과 간선을 효율적으로 생성하고 표현된 DNA 염기 배열의 간선에 실제간을 적용하여 가중치 정보를 계산하는 ACO(Algorithm for Code Optimization)를 제안한다. DNA 코딩 방법은 변형된 유전자 알고리즘으로 DNA 기능을 유지하며, 서열의 길이를 줄일 수 있으므로 최적의 서열을 생성할 수 있는 특징을 갖는다. 실험에서 ACO를 TSP에 적용하여 Adleman의 DNA 컴퓨팅 알고리즘과 비교하였다. 그 결과 초기 문제 표현에서 우수한 적합도 값을 생성했으며, 경로의 변화에도 능동적으로 대처하여 최적의 결과를 빠르게 탐색할 수 있었다.

  • PDF

The Maximum Scatter Travelling Salesman Problem: A Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Asaad Shakir Hameed;Modhi Lafta Mutar;Mohammed F. Alrifaie;Mundher Mohammed Taresh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.193-201
    • /
    • 2023
  • In this paper, we consider the maximum scatter traveling salesman problem (MSTSP), a travelling salesman problem (TSP) variant. The problem aims to maximize the minimum length edge in a salesman's tour that travels each city only once in a network. It is a very complicated NP-hard problem, and hence, exact solutions can be found for small sized problems only. For large-sized problems, heuristic algorithms must be applied, and genetic algorithms (GAs) are found to be very successfully to deal with such problems. So, this paper develops a hybrid GA (HGA) for solving the problem. Our proposed HGA uses sequential sampling algorithm along with 2-opt search for initial population generation, sequential constructive crossover, adaptive mutation, randomly selected one of three local search approaches, and the partially mapped crossover along with swap mutation for perturbation procedure to find better quality solution to the MSTSP. Finally, the suggested HGA is compared with a state-of-art algorithm by solving some TSPLIB symmetric instances of many sizes. Our computational experience reveals that the suggested HGA is better. Further, we provide solutions to some asymmetric TSPLIB instances of many sizes.

Optimization of the Travelling Salesman Problem Using a New Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Furat Fahad Altukhaim;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.12-22
    • /
    • 2024
  • The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.

Extended hybrid genetic algorithm for solving Travelling Salesman Problem with sorted population (Traveling Salesman 문제 해결을 위한 인구 정렬 하이브리드 유전자 알고리즘)

  • Yugay, Olga;Na, Hui-Seong;Lee, Tae-Kyung;Ko, Il-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2269-2275
    • /
    • 2010
  • The performance of Genetic Algorithms (GA) is affected by various factors such as parameters, genetic operators and strategies. The traditional approach with random initial population is efficient however the whole initial population may contain many infeasible solutions. Thus it would take a long time for GA to produce a good solution. The GA have been modified in various ways to achieve faster convergence and it was particularly recognized by researchers that initial population greatly affects the performance of GA. This study proposes modified GA with sorted initial population and applies it to solving Travelling Salesman Problem (TSP). Normally, the bigger the initial the population is the more computationally expensive the calculation becomes with each generation. New approach allows reducing the size of the initial problem and thus achieve faster convergence. The proposed approach is tested on a simulator built using object-oriented approach and the test results prove the validity of the proposed method.

A Study on the Irregular Nesting Problem Using Genetic Algorithm and No Fit Polygon Methodology (유전 알고리즘과 No Fit Polygon법을 이용한 임의 형상 부재 최적배치 연구)

  • 유병항;김동준
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.77-82
    • /
    • 2004
  • The purpose of this study is to develop a nesting algorithm, using a genetic algorithm to optimize nesting order, and modified No Fit Polygon(NFP) methodology to place parts with the order generated from the previous genetic algorithm. Various genetic algorithm techniques, which have thus far been applied to the Travelling Salesman Problem, were tested. The partially mapped crossover method, the inversion method for mutation, the elitist strategy, and the linear scaling method of fitness value were selected to optimize the nesting order. A modified NFP methodology, with improved searching capability for non-convex polygon, was applied repeatedly to the placement of parts according to the order generated from previous genetic algorithm. Modified NFP, combined with the genetic algorithms that have been proven in TSP, were applied to the nesting problem. For two example cases, the combined nesting algorithm, proposed in this study, shows better results than that from previous studies.