• 제목/요약/키워드: Travelling Waves

검색결과 45건 처리시간 0.029초

철도차량의 전동음 예측에 관한 연구 -차륜과 레일의 소음 기여도 분석- (A Study on Prediction of Rolling Noise for Railway -Noise Contribution of Wheels and Rail-)

  • 김재철;구동회
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.486-492
    • /
    • 2000
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel /rail surface on tangent track in the absence of discontinuities such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are treansmitted through the wheel and rail structures exciting resonances of the wheel and travelling waves in the rail. Then these vibrations radiate noise to the wayside. In this paper we predict the rollingnoise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our prediction. these results show in good agreement between 500 Hz and 3150 Hz.

  • PDF

O.F. Cable에 연결된 154kV GIS의 뇌보호 (Lightning protection in an 154kV GIS connected by oil-filled cables)

  • 정태호
    • 전기의세계
    • /
    • 제29권5호
    • /
    • pp.315-320
    • /
    • 1980
  • It has been appeared and widely used today SF6 Gas Insulated Substation(Hereafter called GIS) for the power supply to the densely populated area due to the superior insulation withstand ability of SF6 Gas. And to maximize the compact effect of this substation, it is normal practice to connect underground cables. If it is possible to elieminate the redundant lightning arresters using the physical characterestics of travelling waves in underground cables, economical advantages can be obtained together with easy maintenances. It is presented in this paper the possiblity of eliminating the transformer protection lightning arresters under some conditions for the 154kV GIS's (BIL:750kV) which Korea Electric Co. plans to construct using the general purpose digital computer program.

  • PDF

충격파-와동 간섭의 파라메터 연구 (Parametric Study on Shock-Vortex Interaction)

  • 장근식;장세명
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.921-926
    • /
    • 2005
  • In the idealized model problem of the interaction between a planar travelling shock and a symmetric vortex, the physics of shock distortion and quadrupole sound generation are well known to many researchers. However, the authors have distinguished the weak waves reflected and transmitted by the complicated photograph images obtained from a shock tube experiment. In this paper, we introduces a parametric study based on Navier-Stokes simulation and Rankin vortex model to see the difference of shock deformation shapes. Four combination of the strength of shock and vortex are respectively selected from a parameter plane of shock and vortex strength extended to the strong vortex region. The result shows clearly discernable wave morphology for the main parameters, which is not yet explicitly mentioned by other researchers.

차륜/레일에 의한 전동음에 관한 연구 (A Study on Wheel/Rail Rolling Noise)

  • 김재철;유원희;문경호;구동회
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.163-171
    • /
    • 1999
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel/rail surface on tangent tack in the absence of discontinuities, such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are transmitted through the wheel and rail structures, exciting resonances of the wheel and travelling waves ill tile rail. Then these vibrations radiate noise to the wayside. In this paper, we predict the rolling noise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our predication these results show in good agreement between 500 ㎐ and 3150㎐.

  • PDF

A Study on the Fundamental Cause of Stall Stagnation Phenomena in Surges in Compressor Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.119-137
    • /
    • 2017
  • Although the stall stagnation phenomena have often been experienced in site and also analytically in numerical experiments in surges in systems of compressors and flow paths, the fundamental causes have not been identified yet. In order to clarify the situations, behaviours of infinitesimal disturbance waves superposed on a main flow were studied in a simplified one-dimensional flow model. A ratio of the amplifying rate of the system instability to the characteristic slope of the compressor element was surveyed as the instability enhancement factor. Numerical calculations have shown the following tendency of the factor. In the situation where both the sectional area ratio and the length ratio of the delivery flow-path to the suction duct are sufficiently large, the enhancement factors are greater in magnitude, which means occurrence of ordinary deep surges. However, in the situation where the area ratio and/or the length ratio is relatively smaller, the enhancement factor tends to lessen significantly, which situation tends to suppress deep surges for the same value of the characteristic slope. It could result in the stall stagnation condition. In the domain of area ratio vs. length ratio of the delivery duct to the suction duct, contour-lines of the enhancement factor behave qualitatively similar to those of the stall stagnation boundaries of a fan analytically obtained, suggesting that a certain range of the enhancement factor values could specify the stagnation occurrence. The significant decreases in the factors are observed to accompany appearances of phase lags and travelling waves in the wave motions, which macroscopically suggests breaking down of the complete surge actions of filling and emptying of the air in the delivery duct. The strength of the action is deeply related with acoustic interferences and is evaluated in terms of the volume-modified reduced resonance frequency proposed by the author. These observations have shown the fundamental cause and the sequence of the stall stagnation in principle.

한국형 틸팅차량의 터널 주행시 실내/외 압력변화에 대한 실험적 연구 (Experimental Study of the Internal/external Pressure Variation of TTX Travelling through a Tunnel)

  • 윤수환;곽민호;이동호;권혁빈;고태환
    • 한국철도학회논문집
    • /
    • 제12권2호
    • /
    • pp.309-314
    • /
    • 2009
  • 열차가 터널에 진입하면 열차의 전두부에 의해 압축파가, 후마부에 의해 팽창파가 터널 내에 각각 발생하게 된다. 터널내부에서 압축파와 팽창파가 열차와 서로 상호작용하면서 열차 실내/외의 양력은 급격하게 변화한다. 본 논문에서는 한국형 틸팅차량이 터널 주행 시 나타나는 차량의 실내 및 실외(차량표면) 압력변화 및 압력변화율을 분석하여, 터널길이와의 상관관계를 분석하였다. 또한, 현 틸팅차량의 기밀상태에서 터널주행 시 실내압력변화율을 검토하였다. 그 결과 길이가 짧은 터널에서는 압력파의 중첩이 발생하지 않아서 차량 실내/외 압력변화는 크게 나타나지 않았다. 하지만, 긴 터널에서는 압력파의 중첩과 차량과의 상호작용이 동시에 일어나면서 급격한 압력변화가 뚜렷하게 발생하였다. 또한, 특정한 길이의 터널에서는 압축파와 팽창파가 중첩되어 압력변화 및 변화율을 크게 완화시켰다.

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

추파중에서 항행하는 선박의 복원성능에 관한 연구 (A Study on Transverse Stability of Ships in Following Seas)

  • 손경호;윤순동
    • 대한조선학회지
    • /
    • 제26권1호
    • /
    • pp.1-10
    • /
    • 1989
  • 본 연구에서는 추파중에 항행하는 선박의 전복현상과 관련된 횡복원성 문제를 다루었다. 추파중에서 항행하는 선박의 복원력 변동량을 이론적으로 규명하기 위해서 Froude-Krylov 가설과 파랑중에서의 정적 평형조건 등을 이용한 이론계산법을 정식화하였다. 그리고 본 이론계산법에 따라서 고속화물선 선형과 어선 선형에 대해서 복원력 변동량을 계산하였으며, 동일한 파랑조건하에서 실시된 Hamamoto의 모형실험 결과와 비교하였다. 상기 이론계산 결과 및 모형실험 결과로부터 추파의 파정에서 선체중심이 위치하였을 때 복원력이 평수중에 비해서 절반이하로 감소되며, 이때 전복의 위험이 있다는 것을 확인할 수 있었다.

  • PDF

시간영역법에 의한 강제동요시 동유체력 해석 (Linear Time Domain Analysis of Radiation Problems)

  • 공인영;이기표
    • 대한조선학회지
    • /
    • 제24권4호
    • /
    • pp.9-18
    • /
    • 1987
  • The hydrodynamic radiation forces acting on a ship travelling in waves have been conventionally treated by strip theories or by direct three dimensional approaches, most of which have been formulated in frequency domain. If the forward speed of a ship varies with time, or if its path is not a straight line, conventional frequency domain analysis can no more be used, and for these cases time domain analysis may be used. In this paper, formulations are made in time domain with applications to some problems the results of which are known in frequency domain. And the results of both domains are compared to show the characteristics and validity of time domain solutions. The radiation forces acting on a three dimensional body within the framework of a linear theory. If the linearity of entire system is assumed, radiation forces due to arbitrary ship motions can be expressed by the convolution integral of the arbitrary motion velocity and the so called impulse response function. Numerical calculations are done for some bodies of simple shapes and Series-60[$C_B=0.7$] ship model. For all cases, integral equation techniques with transient Green's function are used, and velocity or acceleration potentials are obtained as the solution of the integral equations. In liner systems, time domain solutions are related with frequency domain solutions by Fourier transform. Therefore time domain solutions are Fourier transformed by suitable relations and the results are compared with various frequency domain solutions, which show good agreements.

  • PDF

추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究) (Wave Exciting Forces Acting on Ships in Following Seas)

  • 손경호;김진안
    • 대한조선학회지
    • /
    • 제21권3호
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF