• Title/Summary/Keyword: Travelling Salesman Problem(TSP)

Search Result 25, Processing Time 0.033 seconds

A DP-based heuristic for the travelling salesman problem (동적계획법을 이용한 외판원문제에 대한 발견적해법)

  • 서병규;김종수
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.328-338
    • /
    • 1994
  • TSP(Traveling Salesman Problem) is a famous problem in Operations Research fields due to its applicability to various problems. It is also well-known that the problem is hard to solve in reasonable time, since it is in the NP-Complete class. Hence it is desired to develop heuristics which have polynominal complexity and also solve the problem to near-optimality. This paper presents a heuristic algorithm for TSP using the concept of dynamic programming. The proposed method has the complexity of O(N$\^$3/), and gives improved solutions than other well-known algorithms in our extensive computational experiments.

A Study on the Irregular Nesting Problem Using Genetic Algorithm and No Fit Polygon Methodology (유전 알고리즘과 No Fit Polygon법을 이용한 임의 형상 부재 최적배치 연구)

  • 유병항;김동준
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.77-82
    • /
    • 2004
  • The purpose of this study is to develop a nesting algorithm, using a genetic algorithm to optimize nesting order, and modified No Fit Polygon(NFP) methodology to place parts with the order generated from the previous genetic algorithm. Various genetic algorithm techniques, which have thus far been applied to the Travelling Salesman Problem, were tested. The partially mapped crossover method, the inversion method for mutation, the elitist strategy, and the linear scaling method of fitness value were selected to optimize the nesting order. A modified NFP methodology, with improved searching capability for non-convex polygon, was applied repeatedly to the placement of parts according to the order generated from previous genetic algorithm. Modified NFP, combined with the genetic algorithms that have been proven in TSP, were applied to the nesting problem. For two example cases, the combined nesting algorithm, proposed in this study, shows better results than that from previous studies.

Extended hybrid genetic algorithm for solving Travelling Salesman Problem with sorted population (Traveling Salesman 문제 해결을 위한 인구 정렬 하이브리드 유전자 알고리즘)

  • Yugay, Olga;Na, Hui-Seong;Lee, Tae-Kyung;Ko, Il-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2269-2275
    • /
    • 2010
  • The performance of Genetic Algorithms (GA) is affected by various factors such as parameters, genetic operators and strategies. The traditional approach with random initial population is efficient however the whole initial population may contain many infeasible solutions. Thus it would take a long time for GA to produce a good solution. The GA have been modified in various ways to achieve faster convergence and it was particularly recognized by researchers that initial population greatly affects the performance of GA. This study proposes modified GA with sorted initial population and applies it to solving Travelling Salesman Problem (TSP). Normally, the bigger the initial the population is the more computationally expensive the calculation becomes with each generation. New approach allows reducing the size of the initial problem and thus achieve faster convergence. The proposed approach is tested on a simulator built using object-oriented approach and the test results prove the validity of the proposed method.

Minimum time path planning of robotic manipulator in drilling/spot welding tasks

  • Zhang, Qiang;Zhao, Ming-Yong
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP) and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA) is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

Realtime Multiple Vehicle Routing Problem using Self-Organization Map (자기조작화 신경망을 이용한 복수차량의 실시간 경로계획)

  • 이종태;장재진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.4
    • /
    • pp.97-109
    • /
    • 2000
  • This work proposes a neural network approach to solve vehicle routing problems which have diverse application areas such as vehicle routing and robot programming. In solving these problems, classical mathematical approaches have many difficulties. In particular, it is almost impossible to implement a real-time vehicle routing with multiple vehicles. Recently, many researchers proposed methods to overcome the limitation by adopting heuristic algorithms, genetic algorithms, neural network techniques and others. The most basic model for path planning is the Travelling Salesman Problem(TSP) for a minimum distance path. We extend this for a problem with dynamic upcoming of new positions with multiple vehicles. In this paper, we propose an algorithm based on SOM(Self-Organization Map) to obtain a sub-optimal solution for a real-time vehicle routing problem. We develope a model of a generalized multiple TSP and suggest and efficient solving procedure.

  • PDF

Heuristics for Sequencing Printed Circuit Boards on a Surface Mount Device Placement Machine (SMD기계의 PCB 생산순서 결정을 위한 발견적 기법)

  • Song, Chang-Yong;Shinn, Seong-Whan
    • IE interfaces
    • /
    • v.13 no.2
    • /
    • pp.195-203
    • /
    • 2000
  • This paper considers the problem of sequencing printed circuit boards(PCBs) on an automatic surface mount device(SMD) placement machine in order to minimize total setup time. Since the total set of component feeders needed by all boards cannot be loaded simultaneously on the magazine, the setup must be made between two successive boards in the sequence. It is assumed that the setup time depends on the number of component feeders to be replaced in the magazine. An important characteristic is that each feeder occupies a different number of slots in the magazine. This problem is equivalent to travelling salesman problem(TSP) except that the distances between two cities, that is, the setup times between two boards, are not known in advance. So, TSP-based heuristics with new distance functions are presented and their performances are compared through various test problems. Computational results indicate that our heuristics outperform existing methods.

  • PDF

Acceleration of Simulated Annealing and Its Application for Virtual Path Management in ATM Networks (Simulated Annealing의 가속화와 ATM 망에서의 가상경로 설정에의 적용)

  • 윤복식;조계연
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.2
    • /
    • pp.125-140
    • /
    • 1996
  • Simulated annealing (SA) is a very promising general purpose algorithm which can be conveniently utilized for various complicated combinatorial optimization problems. But its slowness has been pointed as a major drawback. In this paper, we propose an accelerated SA and test its performance experimentally by applying it for two standard combinatorial optimization problems (TSP(Travelling Salesman Problem) and GPP(Graph Partitioning Problem) of various sizes. It turns out that performance of the proposed method is consistently better both in convergenge speed and the quality of solution than the conventional SA or SE (Stochastic Evolution). In the second part of the paper we apply the accelerated SA to solve the virtual path management problem encountered in ATM netowrks. The problem is modeled as a combinatorial optimization problem to optimize the utilizy of links and an efficient SA implementation scheme is proposed. Two application examples are given to demonstrate the validity of the proposed algorithm.

  • PDF

Optimal Polling Method for Improving PCF MAC Performance in IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜 시스템에서 PCF 프로토콜의 성능을 향상시키기 위한 최적의 폴링 방식)

  • Choi, Woo-Yong;Lee, Sang-Wan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • A modified PCF(Point Coordination Function) protocol with the optimal polling sequence is defined in detail and shown to improve the efficiency of the conventional PCF protocol in IEEE 802.11 wireless LAN standard. The problem for the optimal polling sequence is formulated as TSP(Travelling Salesman Problem) with the distance values of 1's or 0's. Numerical examples show that the optimal polling sequence increases the capacity of the real-time service such as VoIP(Voice over Internet Protocol).

Truss Design Optimization using Ant Colony Optimization Algorithm (개미군락최적화 알고리즘을 이용한 트러스 구조물의 설계최적화)

  • Lee, Sang-Jin;Han, Yu-Dong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.709-712
    • /
    • 2010
  • 본 논문은 개미군락최적화 알고리즘을 이용한 트러스 구조물의 설계최적화에 대한 이론적 배경과 수치해석 결과를 기술하였다. 트러스의 설계최적화를 수행하기 위하여 구조물의 중량을 최소화하는 것을 목적 함수로 하고 구조물에서 발생하는 응력과 변위의 허용치를 초과하지 않는 것을 구속조건으로 이용하였다. 본 연구에서는 개미군락알고리즘을 구조물의 최적화에 적용하기 위하여 외판원문제(travelling salesman problem: TSP)를 재 정의하는 방법을 사용하였으며 최대-최소개미시스템(max-min ant system)을 도입하여 트러스 구조물의 최적설계를 수행하였다. 이때 이산화 된 설계변수를 사용하였으며 구속조건을 처리하기 위해서 벌점함수를 사용하였다. 본 연구를 통하여 개미군락최적화 알고리즘은 구조최적화에 그 적용 가능성이 높았으며 전통적인 최적검색 기법의 새로운 대안으로 이용될 수 있는 것으로 나타났다.

  • PDF

Neural network based tool path planning for complex pocket machining (신경회로망 방식에 의한 복잡한 포켓형상의 황삭경로 생성)

  • Shin, Yang-Soo;Suh, Suk-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.32-45
    • /
    • 1995
  • In this paper, we present a new method to tool path planning problem for rough cut of pocket milling operations. The key idea is to formulate the tool path problem into a TSP (Travelling Salesman Problem) so that the powerful neural network approach can be effectively applied. Specifically, our method is composed of three procedures: a) discretization of the pocket area into a finite number of tool points, b) neural network approach (called SOM-Self Organizing Map) for path finding, and c) postprocessing for path smoothing and feedrate adjustment. By the neural network procedure, an efficient tool path (in the sense of path length and tool retraction) can be robustly obtained for any arbitrary shaped pockets with many islands. In the postprocessing, a) the detailed shape of the path is fine tuned by eliminating sharp corners of the path segments, and b) any cross-overs between the path segments and islands. With the determined tool path, the feedrate adjustment is finally performed for legitimate motion without requiring excessive cutting forces. The validity and powerfulness of the algorithm is demonstrated through various computer simulations and real machining.

  • PDF