• 제목/요약/키워드: Trapping dielectrophoresis

검색결과 5건 처리시간 0.02초

A Dielectrophoresis Microfluidic Device for Trapping Bioparticles at Low Voltage and Frequency

  • Jeong, Jin-Tae;Shin, Hyun-Min;Kim, Duwoon;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • 제41권1호
    • /
    • pp.60-65
    • /
    • 2016
  • Purpose: The necessity for precise manipulation of bioparticles has greatly increased in the fields of bioscience, biomedical, and environmental monitoring. Dielectrophoresis (DEP) is considered to be an ideal technique to manipulate bioparticles. The objective of this study is to develop a DEP microfluidic device that can trap fluorescent beads, which mimic bioparticles, at the low voltage and frequency of the sinusoidal signal supplied to the microfluidic device. Methods: A DEP microfluidic device, which is composed of polydimethylsiloxane (PDMS) channels and interdigitated electrode networks, is fabricated to trap fluorescent beads. The geometry of the interdigitated electrodes is determined through computational simulation. To determine the optimum voltage and frequency of the sinusoidal signal supplied to the device, the experiments of trapping beads are conducted at various combinations of voltage and frequency. The performance of the DEP microfluidic device is evaluated by investigating the correlation between fluorescent intensities and bead concentrations. Results: The optimum ratio of the widths between the negative and positive electrodes was 1:4 ($20:80{\mu}m$) at a gap of $20{\mu}m$ between the two electrodes. The DEP electrode networks were fabricated based on this geometry and used for the bead trapping experiments. The optimum voltage and frequency of the supplied signal for trapping fluorescent beads were 15 V and 5 kHz, respectively. The fluorescent intensity of the trapped beads increased linearly as the bead concentration increased. The coefficient of determination ($R^2$) between the fluorescent intensity and the bead concentration was 0.989. Conclusions: It is concluded that the microfluidic device developed in this study is promising for trapping bioparticles, such as a cell or virus, if they are conjugated to beads, and their concentration is quantified.

사중극자 유전영동 트랩에서의 입자의 동특성에 관한 연구 (Analysis of Particle Motion in Quadrupole Dielectrophoretic Trap with Emphasis on Its Dynamics Properties)

  • 니치 찬드라세카란;이은희;박재현
    • 대한기계학회논문집B
    • /
    • 제38권10호
    • /
    • pp.845-851
    • /
    • 2014
  • 유전영동(DEP)이란 비균질의 전기장과 그에 따라 입자 내부에 형성되는 극성힘에 의해 용매에 분산되어 있는 입자에 야기되는 운동을 의미하며, 세포, 바이러스, 나노입자 등의 트래핑, 입자분류, 셀분리 등과 같은 다양한 생물학적 응용에 이용되어 왔다. 지금까지 유전영동트랩에 대한 해석은 주기평균 ponderomotive force 에 기반한 정특성 해석이 주를 이루고 있으며, 동특성에 대해서는 많은 연구가 이루어져 있지 않다. 이는 지금까지 유전영동트랩이 적용된 입자들의 크기가 상대적으로 매우 크기 때문으로, 분석입자의 크기가 매우 작은 나노단위 분석에서는 적절하지 않다. 본 연구에서는, 다양한 시스템 파라미터들에 대한 트래핑의 동역학적 반응 및 그들의 트래핑 안정성에 대한 영향을 심도깊게 관찰하고자 한다. 특히, 입자의 전도율에 따른 입자의 동특성의 변화 또한 관찰하고자 한다.

Stamp-to-Stick Bonding 및 Microtransfer Molding 방법을 이용한 미세유체 채널이 집적된 광전기유체소자의 제작 (Fabrication of channel-integrated optoelectrofluidic device using stamp-to-stick bonding and microtransfer methods)

  • 황현두;이도현;박제균
    • 센서학회지
    • /
    • 제18권2호
    • /
    • pp.154-159
    • /
    • 2009
  • This paper describes two methods - stamp-to-stick bonding and microtransfer molding - to integrate microfluidic channel into an optoelectrofluidic device for in-channel microparticle manipulation. We have demonstrated the optoelectronic microparticle manipulation in the channel-integrated optoelectrofluidic device using a liquid crystal display. As injecting a liquid sample containing $15{\mu}m$-diameter polystyrene particles into the fabricated channel, trapping and transport of individual microparticles have been successfully demonstrated. This channel-integrated optoelectrofluidic device may be useful for several in-channel applications based on the optoelectrofluidics such as optoelectronic flow control, droplet-based protein assay and bead-based immunoassay.

미세유체칩내 electrode의 opening window형태에 따른 유전전기영동력 특성 규명 (Characterization of Dielectrophoretic Force for the Structural Shapes of Window in Microfluidic Dielectrophoretic Chip)

  • 이재우;곽태준;윤대성;이상우
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권4호
    • /
    • pp.189-196
    • /
    • 2013
  • Dielectrophoresis(DEP) is useful in manipulation and separation of micro-sized particles including biological samples such as bacteria, blood cells, and cancer cells in a micro-fluidic device. Especially, those separation and manipulation techniques using DEP in combination of micro fabrication technique have been researched more and more. Recently, it is revealed that a window structure of insulating layer in microfluidic DEP chip is key role in trap of micro-particles around the window structure. However, the trap phenomenon-driven by DEP force gradient did not fully understand and is still illusive. In this study, we characterize the trap mechanism and efficiency with different shapes of window in a microfluidic DEP chip. To do this characterization, we fabricated 4 different windows shapes such as rhombus, circle, squares, and hexagon inside a micro-fluidic chip, and performed micro-sized particles manipulation experiments as varying the frequency and voltage of AC signal. Moreover, the numerical simulation with the same parameters that were used in the experiment was also performed in order to compare the simulation results and the experimental results. Those comparison shows that both results are closely matched. This study may be helpful in design and development of microfluidic DEP chip for trapping micro-scaled biological particle.