• Title/Summary/Keyword: Trapezoidal back-EMF

Search Result 26, Processing Time 0.022 seconds

Torque Ripple Characteristics Analysis of BLDC Motor According to Current Commutation Angle (전류 전환각에 따른 BLDC 전동기의 토크 리플 특성 해석)

  • Lee, In-Jae;Moon, Ji-Woo;Kim, Byong-Kuk;Han, Sung-Jin;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.970-971
    • /
    • 2006
  • In this paper, analysis of BLDC motor torque ripple characteristic according to current commutation angle. The ideal rectangular current wave and the trapezoidal current wave by current commutation angle and BLDC back-EMF are analyzed mathematically using Fourier series. Moreover, the simulation is performed by Matlab/simulink to compare with experiment results and analyze BLDC motor characteristics.

  • PDF

Analysis of harmonics and torque ripples for the BLDC operations (BLDC 모터의 운전시의 고조파 및 토오크 리플 해석)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Hong, Ik-Pyo;Cho, Byung-Guk
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.877-879
    • /
    • 1993
  • In this paper, the voltage control is applied to the adjustable speed operation of BLDC motor with the trapezoidal back emf waveform. Torque chrateristics of BLDC are investigated through Fourier analysis when the pulse width modulation inverter is applied. Also, this paper consisders the theoretical problem of eliminating some harmonic components in inverter output waveforms, which, in turn, allows to remove some ripple components. Numerical technique is applied to solve the transcendental equations of the problem by the computer.

  • PDF

Implementation of the BLDC Motor Drive System using PFC converter and DTC (PFC 컨버터와 DTC를 이용한 BLDC 모터의 구동 시스템 구현)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.62-70
    • /
    • 2007
  • In this paper, the boost Power Factor Correction(PFC) technique for Direct Torque Control(DTC) of brushless DC motor drive in the constant torque region is implemented on a TMS320F2812DSP. Unlike conventional six-step PWM current control, by properly selecting the inverter voltage space vectors of the two-phase conduction mode from a simple look-up table at a predefined sampling time, the desired quasi-square wave current is obtained, therefore a much faster torque response is achieved compared to conventional current control. Furthermore, to eliminate the low-frequency torque oscillations caused by the non-ideal trapezoidal shape of the actual back-EMF waveform of the BLDC motor, a pre-stored back-EMF versus position look-up table is designed. The duty cycle of the boost converter is determined by a control algorithm based on the input voltage, output voltage which is the dc-link of the BLDC motor drive, and inductor current using average current control method with input voltage feed-forward compensation during each sampling period of the drive system. With the emergence of high-speed digital signal processors(DSPs), both PFC and simple DTC algorithms can be executed during a single sampling period of the BLDC motor drive. In the proposed method, since no PWM algorithm is required for DTC or BLDC motor drive, only one PWM output for the boost converter with 80 kHz switching frequency is used in a TMS320F2812 DSP. The validity and effectiveness of the proposed DTC of BLDC motor drive scheme with PFC are verified through the experimental results. The test results verify that the proposed PFC for DTC of BLDC motor drive improves power factor considerably from 0.77 to as close as 0.9997 with and without load conditions.

Field Weakening Operation of a High Torque Density Five Phase Permanent Magnet Motor Drive (고밀도 토크를 가지는 5상 영구자석형 전동기의 약계자 제어)

  • Kim, Nam-Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.318-323
    • /
    • 2007
  • This paper investigates the field weakening operation of a five-phase permanent magnet motor. The proposed motor has concentrated windings such that the produced back-EMF is almost trapezoidal and is supplied with the combined sinusoidal plus third harmonic of currents to produce trapezoidal current. Therefore this motor, while generating the same average torque as an equivalent permanent magnet brushless dc motor, overcomes its disadvantages. It is shown that torque producing and flux producing components of current for this motor can be decoupled by using multiple reference frame transformation. Therefore, Vector control is easily applicable to the motor. This motor has benefits such as high torque density of a BLDC motor below the rated speed and controllability of PMSM above the rated speed and during the field weakening region and simulation and experimental results are provided to prove the validity of the superior performance of this drive.

A Five-Phase Induction Motor Speed Control System Excluding Effects of 3rd Current Harmonics Component

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.294-303
    • /
    • 2011
  • In this paper an effective five-phase induction motor (IM) and its drive methods are proposed. Due to the additional degrees of freedom, the five-phase IM drive presents unique characteristics for enhancing the torque producing capability of the motor. Also the five-phase motor drives possess many other advantages when compared to traditional three-phase motor drives. Some of these advantages include, reducing the amplitude and increasing the frequency of the torque pulsation, reducing the amplitude of the current without increasing the voltage per phase and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated winding, the produced back electromotive force (EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus the third harmonic of the currents. For demonstrating the superior performance of the proposed five-phase IM, the motors are also analyzed on the synchronously rotating reference frame. To supply trapezoidal current waveform and to exclude the effect of the $3^{rd}$ harmonic current, a new control stratagem is proposed. The proposed control method is based on direct torque control (DTC) and rotor flux oriented control (RFOC) of the five-phase IM drives. It is able to reduce the acoustical noise, the torque, the flux, the current, and the speed pulsations during the steady state. The DTC transient merits are preserved, while a better quality steady-state performance is produced in the five phase motor drive for a wide speed range. Experimental results clearly demonstrated a more dynamic steady state performance with the proposed control system.

A Study on New Current Control Method for Square Current Wave in Y Connected 7-Phase BLDC Motor Drive System (Y 결선된 7상 BLDC 전동기의 구형파 전류 제어를 위한 새로운 전류 제어방식에 관한 연구)

  • Moon, Jong-Joo;Lee, Won;Kim, Jang-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.576-585
    • /
    • 2016
  • The current control methods of Y-connected 7 Phase BLDC motor are sine wave current control and square wave control. The sine wave current control method needs dq axis transformation of $7{\times}7$ matrix for current control and very complex. Also this method is not suitable for multi Phase BLDC motor of trapezoidal back emf wave. Therefore, in Y connected multi phase BLDC motor, the square wave current control methods are required. Generally, in the 3Phase BLDC system, Average current control method is used for current control. The average current is obtained that the summation of absolute value of each phase current magnitude is divided by the number of conduction phase. However, if average current control method is applied to multi-phase system, there is a problem that each phase currents are different. This problem affects unbalance of each phase torque and fluctuation of total torque. This paper proposed each phase current control method of Y connected 7Phase BLDC system. Proposed method is used for PI controller of each phase for each phase current control. This method can perfect square wave current control. Also, configuration of the method is easier than DQ axis transformation. Proposed method is verified through simulation and experiments.