• Title/Summary/Keyword: Trapezoidal Antenna

Search Result 13, Processing Time 0.019 seconds

Trapezoidal Monopole Microstrip Antenna for UWB (UWB용 사다리꼴 모노폴 마이크로스트립 안테나)

  • Joo, Chang-Bok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.134-140
    • /
    • 2009
  • In this paper, we discussed the trapezoidal antenna model in the microstrip structure for UWB communications in the frequency band of $3.1{\times}10.6GHz$. Through the computer simulations for the difference size of trapezoidal monopole microstrip antenna model, the good impedance matching characteristic of return loss less than -10dB(VSWR<2) in all the band of UWB showed. The optimized antenna of this paper also showed the quasi-isotropic radiation characteristics in the horizontal plane and linear phase characteristic of nondispersive property.

Design of a Trapezoidal Microstrip Patch Antenna with Fractal Structure for Vehicle GPS (차량 GPS용 프랙털 구조의 사다리꼴 마이크로스트립 패치 안테나 설계)

  • Sung, Ha-Won;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.215-221
    • /
    • 2009
  • In this paper, a slotted trapezoidal microstrip fractal patch antenna is designed and fabricated for the vehicle GPS antenna. We designed air substrate patch antenna to obtain gain improvement by the elimination of dielectric loss. By applying fractal structure with crossed slot to trapezoidal patch, we obtained 42.5 % as much patch size as conventional triangular patch antenna. Measured bandwidth was 200 MHz on GPS band under VSWR 2:1 And gain was 4.31 dBi at resonant frequency that is 2$\sim$5 dB higher gain than conventional ceramic patch antenna on GPS band.

Shark Antenna for Vehicle TDMB and GPS Receiver (TDMB 및 GPS 수신용 전장용 샤크 안테나)

  • Kim, Joo-Man;Son, Tae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.57-62
    • /
    • 2008
  • In this paper, a folded helical monopole antenna for TDMB receiving and a trapezoidal fractal microstrip patch antenna for GPS were designed and fabricated for the vehicle shark antenna. To minimize null which is generating toward antenna axis direction and to receive both vertical polarization and horizontal polarization for TDMB antenna, we fold 90 degree helical monopole element. GPS antenna to get wide bandwidth and gain improvement was designed an air substrate trapezoidal microstrip patch antenna. Fabricated TDMB and GPS antenna were measured for S11 and radiation pattern, and compared with a commercialized antenna. TDMB antenna shows 3 dB higher antenna gain and receiving signal strength than the commercial one. GPS antenna shows the gain of 4.31 dBi at the resonant frequency, which is $3{\sim}5\;dB$ higher gain over whole operating band and 135MHz wide bandwidth at 2:1 VSWR than the conventional ceramic antenna.

  • PDF

Design for Trapezoidal Planar UWB Antenna Using Symmetry Meander Feedline (대칭 미앤더 급전 선로를 이용한 사다리꼴 평면 UWB 안테나 설계)

  • Kim, Tae-Geun;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.739-745
    • /
    • 2009
  • This paper presents a design for trapezoidal planar UWB(Ultra Wide-band) antenna using symmetry meander line to realize broad bandwidth at low frequency region. The size of proposed design antenna is $15.5{\times}21{\times}1.6mm^3$ and dielectric substrate considered in design has 4.4 of relative permittivity. The calculated bandwidth is from 1.31 GHz to 10.83 GHz and the measured return loss is 1.5 GHz to 10.6 GHz at -10 dB below, and satisfies with the UWB antenna's bandwidth. The simulated and measured radiation patterns show fine agreement with each other at each frequency.

Design for Triple Band Patch Array Antenna with High Detection Ability

  • Kim, In-Hwan;Min, Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.214-223
    • /
    • 2013
  • This paper proposes a theoretical analysis of hidden device detection and a design of multiband circular polarization patch array antenna for non-linear junction detector system application. A good axial ratio of circular polarization patch antenna is realized by a new approach that employs inclined slots, two rectangular grooves and a truncated ground for the conventional antenna. A good axial ratio of the 1.5 dB lower is measured by having an asymmetric gap distance between the ground planes of the coplanar waveguide feeding structure. The common ground plane of the linear array has an optimum trapezoidal slot array to reduce the mutual coupling without increasing the distance between the radiators. The higher gain of about 1 dBi is realized by using the novel common ground structure. The measured return loss, gain, and axial ratio of the proposed single radiator, as well as the proposed array antennas, showed a good agreement with the simulated results.

Design of Wide-Band Trapezoidal Monopole Antennas with Back-Side Patch (후면 패치를 갖는 광대역 사다리꼴 모노폴 안테나의 설계)

  • Choi, Hwan-Gi;Choi, Hak-Keun;Lee, Hyoung-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.631-638
    • /
    • 2009
  • In this paper, a wide-band monopole antenna for use in PCS/WDCMA/Wivro/S-DMB(1.750${\sim}$2.655 GHz) band is presented. The presented antenna is a trapezoidal monopole antenna which has back-side patch and improves the bandwidth. To confirm the wide-band characteristics and radiation pattern of presented antenna, the experimental antenna is fabricated and its radiation characteristics are measured, compared with calculated results. It is shown that the designed antenna has VSWR less than 1.5, gain over 2 dBi in 1.73${\sim}$3.48 GHz. The measured results show good agreement with calculated results. From the result, we confirm that the designed antenna can be used indoor antenna for PCS/WCDMA/WiBro/S-DMB.

Design and Fabrication of the Antenna for Wibro and WLAN Communications Using CPWG Structure (CPWG 구조를 이용한 Wibro 및 WLAN 통신용 안테나 설계 및 제작)

  • Lee, Seung-Woo;Kim, Nam;Rhee, Seung-Yeop
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1086-1095
    • /
    • 2008
  • In this paper, we designed and fabricated the trapezoidal antenna using the CPWG structure for Wibro and WLAN communications. This antenna has broadband characteristics using the basic trapezoidal antenna, and an H-shaped parasitic patch is making an expansion of resonance bandwidth and bringing stability of impedance matching. Especially, CPWG structure is combined two kinds of the structure which of a monopole antenna and a coplanar waveguide antenna. They make up for the weak point of the CPW which is variation of impedance matching according to varying the gap or size of the feed line and the ground. The designed antenna has occurred resonances of which the band of 2.2 GHz to 4.6 GHz(70.5 %) below the return loss of -10 dB($VSWR{\leq}2$) obtained in measurement, and it has an omnidirectional radiation pattern of H-plane. In addition, the changes of impedance matching appear slightly caused by the effects of the ground plane and the feed line.

A Study on Radiator of VHF-Band Active Electronically Scanned Array with the Trapezoidal Dipole Structure Using Meander-Line (미엔더 라인을 이용한 사다리꼴 다이폴 구조의 VHF 대역 능동 위상 배열안테나 복사소자 연구)

  • Park, Dae-Sung;Ko, Young-Kwan;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1027-1035
    • /
    • 2016
  • In this paper, the method to miniaturize the radiating element of a VHF-band active electronically scanned array is proposed. The length of the proposed dipole having trapezoidal shape structure is miniaturized using meander line while the performance degradation is minimized. The grid reflector is used to improve the antenna directivity and insensitivity due to the outer environment. In addition, the antenna is designed to take into account for array application. The fabricated antenna has a 9.1 % fractional bandwidth for the voltage standing wave ratio(VSWR) 2:1 and the maximum gain of 4.24 dBi. The front-to-back ratio(FBR) is larger than 15 dB.

Design of Wideband High Gain Trapezoidal Monopole Antenna using Backside Frequency Selective Surface (후면 주파수 선택 표면을 이용한 광대역 고이득 평면 사다리꼴 모노폴 안테나 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.473-478
    • /
    • 2021
  • This paper designed a wideband, high gain planar trapezoidal monopole antenna using backside frequency selective surface (FSS) according to the need for wideband and high gain antenna required in various fields such as rapidly increasing wireless communication, autonomous vehicles, 5G wireless communication and wideband applications. The proposed antenna uses a dual metallic to have a structural difference from the existing FSS. By solving the complexity of the design antenna using genetic algorithms (GA) and high frequency structural simulators (HFSS) simulations, the proposed antenna is not only produce a high efficiency but also presents a wide bandwidth of 3.52 to 5.92 GHz and a gain of 10.5 dBi over the entire bandwidth, with the highest gain of 11.8 dBi at 5.1 GHz. It has been confirmed that the gain increased 8.6 dBi as the 36% impedance bandwidth of 1.8 GHz compared to the existing antenna improved to the 50% impedance bandwidth of 2.4 GHz.

Design of a Wideband Antipodal Vivaldi Antenna with an Asymmetric Parasitic Patch

  • Bang, Jihoon;Lee, Juneseok;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2018
  • An antipodal Vivaldi antenna with a compact parasitic patch to overcome radiation performance degradations in the high-frequency band is proposed. For this purpose, a double asymmetric trapezoidal parasitic patch is designed and added to the aperture of an antipodal Vivaldi antenna. The patch is designed to efficiently focus the beam toward the end-fire direction at high frequencies by utilizing field coupling between the main radiating patch and the inserted parasitic patch. As a result, this technique considerably improves the gain and stability of radiation patterns at high frequencies. The proposed antenna has a peak gain greater than 9 dBi over the frequency range of 6-26.5 GHz.