• Title/Summary/Keyword: Transyt-7f

Search Result 33, Processing Time 0.025 seconds

Comparison of Delay Estimates for Signalized Intersection (신호교차로 지체 산정 비교)

  • Jo, Jun-Han;Jo, Yong-Chan;Kim, Seong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • In this paper, the primary objective of the research are to review the methods currently avaliable for estimating the delay incurred by vehicles at signalized intersections. The paper compares the delay estimates from a deterministic queueing model, a model based on shock wave theory , the steady-state Webster model, the queue-based models defined in the 1994 and 2001 version of the High way Capacity Manual, in addition to the delays estimated from the TRANSYT-7F macroscopic simulation and NETSIM microscopic simulation. More especially, this paper is to compare the delay estimates obtained using macroscopic and microscopic simulation tools against state-of-the practice analytical models that are derived from deterministic queueing and shock wave analysis theory. The results of the comparisons indicate that all delay models produce relatively similar results for signalized intersections with low traffic demand, but that increasing differences occur as the traffic demand approaches saturation. In particular, when the TRANSYT-7F and NETSIM are compared, it is highly differences as approach for traffic condition to over-saturation. Also, the NETSIM microscopic simulation is the lowest estimates among the various models.

A Study on Improvement of Run-Time in KS-SIGNAL, Traffic Signal Optimization Model for Coordinated Arterials (간선도로 연동화 신호최적화 모형 KS-SIGNAL의 수행속도 향상을 위한 연구)

  • 박찬호;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.7-18
    • /
    • 2000
  • KS-SIGNAL, a traffic signal optimization model for coordinated arterials, is an optimization model using the mixed integer linear Programming that minimizes total delay on arterials by optimizing left-turn Phase sequences. However, the Previous version of KS-SIGNAL had a difficulty in reducing computation speed because the related variables and constraints multiply rapidly in accordance with the increase of intersections. This study is designed to propose a new model, improving optimizing computation speed in KS-SIGMAl, and evaluate it. This Paper Puts forth three kinds of methodological approaches as to achieve the above goals. At the first step to reduce run-time in the proposed model objective function and a few constraints are Partially modified, which replaces variable in related to queue clearance time with constant, by using thru-movements at upstream intersection and the length of red time at downstream intersection. The result shows that the run-time can be reduced up to 70% at this step. The second step to load the library in LINDO for Windows, in order to solve mixed integer linear programming. The result suggests that run-time can be reduced obviously up to 99% of the first step result. The third step is to add constraints in related to left-turn Phase sequences. The proposed methodological approach, not optimizing all kinds of left-turn sequences, is more reasonable than that of previous model , only in the view of reducing run-tim. In conclusion, run-time could be reduced up to 30% compared with the second results. This Proposed model was tested by several optimization scenarios. The results in this study reveals that signal timing plan in KS-SIGNAL is closer to PASSER-II (bandwidth maximizing model) rather than to TRANSYT-7F(delay minimizing model).

  • PDF

Warrants of Permissive Left-Turn Signal Systems Based on a Cross Road Volumes (교차도로 교통량을 고려한 비보호좌회전 신호체계의 적용기준)

  • 김동녕;최종윤
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.67-77
    • /
    • 2003
  • The purpose of this study is to provide the criteria for implementing unprotected left turn at intersections with variation of traffic volume on a cross road approach. Using Transyt-7F model, the delays calculated from permissive and protected left turn signal system were compared by gradually increasing the left turn volume for a certain opposing through volume up to the volume limits to which permissive left turn is more effective, Average stopped delay of the intersection was used as the measure of effectiveness in this study. The major conclusions are (1) the lighter the traffic gets in a cross road, the more the allowable left turn volume increases. The allowable left turn volume when the ratio of cross traffic to the concerned approach traffic is 0.6 appears about 50% more than the volume when the ratio is 1.0. (2) Comparing to the criteria of the manual of traffic safety facility, the results when the traffic ratio is 0.6 seem to be most similar the criteria of manual and the results when the traffic ratio are 0.8 and 1.0 appears to be lower than the criteria of manual. (3) The possible amount of making a left turn that is inversely proportional to the opposing through traffic, decreases as the number of opposing through lanes increases. The products of volume need to be used as the criteria of permissive left turn with considerable cautions because of its low consistency.

Basic Studies on Development of Turn Penalty Functions in Signalized Intersections (신호교차로의 회전제약함수 개발을 위한 기초연구)

  • O, Sang-Jin;Kim, Tae-Yeong;Park, Byeong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.157-167
    • /
    • 2009
  • This study deals with the turn penalty functions in the urban transportation demand forecasting. The objectives are to develop the penalty functions of left-turn traffic in the case of signalized intersections, and to analyze the applicability of the functions to the traffic assignment models. This is based on the background that the existing models can not effectively account for the delays of left-turn traffic which is bigger than that of through traffic. In pursuing the above, this study gives particular attention to developing the penalty functions based on the degrees of saturation by simulation results of Transyt-7F, and analyzing the applicability of the functions by the case study of Cheongju. The major findings are the followings. First, two penalty functions developed according to the degrees of saturation, are evaluated to be all statistically significant. Second, the results that the above functions apply to the Cheongju network, are analyzed to be converging, though the iteration numbers increase. Third, the link volumes forecasted by turn penalty functions are evaluated to be better fitted to the observed data than those by the existing models. Finally, the differences of traffic volumes assigned by two functions, which are exponential and divided forms, are analyzed to be very small.

A Comparative Study on the Mean Control Delay by Signalized Intersections by the Analysis Model (분석모형별 신호교차로 평균제어지체 비교·분석 연구)

  • Lee, kyu soon;Park, Jin Woo;Sung, Sam Hyun;Lee, Tak Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • The time delay is used as a major indicator of the level of traffic congestion on traffic crossroads. For this purpose, the Daechi Station intersection where traffic congestion occurs and the Yeongdong 5 Bridge intersection where the traffic condition is relatively good, and the average lag time based on the field survey with the lag time calculated various simulation programs. comparison of the average control delay of the field survey data the signal intersection analysis model the KHCS Dechi intersection 7.7 second / vehicle Young dong 5 bridge intersection 7.9 second / vehiclehe VISSIM showed a difference Dechi intersection 21.1 second / vehicle and Young dong 5 bridge intersection 8.1 second / vehiclehe T7F showed a difference Dechi intersection 3.3 second / vehicle and Young dong 5 bridge intersection 9.3 second / vehicle. Analyzing the same intersection proved that the results differed from one simulation model to another.

Simulation Study of the Bus Progression Signal System ("버스연동신호의 시뮬레이션 연구)

  • 설재훈;박창호
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.2
    • /
    • pp.5-18
    • /
    • 1987
  • Buses arrive at a traffic intersection later than passenger cars by the amount of dwell time at previous bus stops. This late arrival of buses affects the total passenger delay at intersections especially in the street carrying large bus volume. The bus progression signal system in which the signal offset is given in favor of bus platoons was applied in the case area of Kangnam street in Seoul, and various effects were analyzed using the TRANSYT-7F simulation model. It was observed that the total passenger delay can be reduced significantly if the bus progression signal system is applied, and the most effective bus priority treatment is proved to be the bus progression signal system installed with exclusive bus lanes.

  • PDF

Adaptive Signal Control for Oversaturated Arterials (과포화 간선도로의 실시간 신호처리)

  • 최병국
    • Journal of Korean Society of Transportation
    • /
    • v.15 no.3
    • /
    • pp.111-130
    • /
    • 1997
  • 교통수요가 용량보다 많아지면 신호교차로가 모든 교통량을 통과시키지 못하므로 시간이 갈수록 대기 행렬이 점점 길어질 것이다. 이러한 과포화상태에서는 늘어나는 대기행렬을 조절하지 못하면 결국에는 Spillback이 상류 교차로로 확대되어 최악에는 교차로에서의 모든 방향의 움직임을 정지시키는 Gridlock상태로까지 악화될 수 있다. 따라서 과포화 상태에서는 비포화 상태와는 달리 늘어나는 대기 행렬을 조절하여 통과 교통량을 최대화 시키는 것이 신호처리의 목적 함수가 될 수 있을 것이다. 6월호의 논문에서는 Static 한 상태의 과포화 간선도로를 신호처리에 의해 일정한 대기행렬을 유지하므로써 시스템을 최적화하는 알고리즘을 개발하였다. 그러나 과포화 간선도로의 교통수요는 매 Cycle 마다 Dynamic 하게 변하고, 과포화의 교통상황에서는 미미한 교통 변화가 우리가 염려하는 Spillback 을 야기시킬 수 있기 때문에 본 논문에서는 6월호에서 개발한 알고리즘에 기초하여 실시간으로 신호처리 하는 알고리즘을 개발하였다. 과포화 상태의 5개의 신호교차로를 가진 간선도로를 Simulation 하여 비교한 결과 본 논문에서 개발한 알고리즘이 PASSER II 나 TRANSYT 7F 보다 차량 한 대당 평균 운행시간이 각각 30%, 20% 줄어들었다.

  • PDF

A Study on the Relationship between the Traffic Signal System and the Air Pollutants emitted by the Motor Vehicles at Intersection

  • Hong, Min-Sun;Woo, Wan-Gi;Park, Jong-In
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.E
    • /
    • pp.364-372
    • /
    • 1993
  • The purpose of this study is to analyze traffic patterns by use of TRANSYT-7F Model, and to choose the optimum traffic-light cycle length and cycle splite to improve traffic flow and air quality at Samsung Intersection in Seoul. Emission rates of air pollutants are calculated for three time segments 0700-0900, 0900-1800 and 1800-2000. The traffic volume correlated reasonably well with air pollutants emitted ; however, the phasing and timing of traffic signals was found to equally be important. The results of performance with optimal setting indicate that the best cycle length were 80sec(0700-0900), 95sec(0900-1800) and 90sec(1800-2000), res-pectively. As expected the highest emissions of air pollutants were observed during the evening rush hours (1800-2000). A properly designed signalized intersection can help reduce traffic delay, driver discomfort, fuel consumption, and air pollution by efficiently the capacity of existing intersection.

  • PDF

Development of Traffic Simulation Using High Level Architecture/Run Time Infrastructure (HLA/RTI 기반의 교통류 분산 시뮬레이션 모형에 관한 연구)

  • Lee, Sang-Heon
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.79-90
    • /
    • 2005
  • There are plenty of optimization models for the signal-system of a single intersection and area traffic. Some of those models are adopted for the real traffic signal control system. The simulators for a single crossroad have been developed, so that we could evaluate optimization models and traffic control systems. However, the simulators for the area traffic are still being developed. Therefore, there are many limitations in the analysis and evaluation for area traffic control system. The area traffic is consisted of several intersections which are very complicated and many traffic strategies are adopted for the control system. This paper features an effective area traffic control system based on the High Lever Architecture(HLA). In this paper, we discuss the design of HLA-based area traffic control simulation. We describe technical motivations for the HLA, the key elements of the architecture and how they are minimum and essential to the goal of reuse and interoperability. A distributed simulation with HLA/RTI provides stable and satisfactory experimental results. Moreover, the prototype traffic control system provides reliable accomplishment compared to the NETSIM and TRANSYT-7F models.

  • PDF

Performance Comparison of Signalized Intersections Analysis Tools in Estimating Control Delays (신호교차로 분석도구별 제어지체 산출 성능 비교 연구)

  • Yun, Ilsoo;Oh, Cheol;Ahn, Hyunkyung;Kim, Kyunghyun;Han, Eum;Kang, Nam Won;Yoon, Jung Eun
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.109-119
    • /
    • 2014
  • PURPOSES : The control delay in seconds per vehicle is the most important traffic operational index to evaluate the level of service of signalized intersections. Thus, it is very critical to calculate accurate control delay because it is used as a basic quantitative evidence for decision makings regarding to investments on traffic facilities. The control delay consists of time-in-queue delay, acceleration delay, and deceleration delay so that it is technically difficult to directly measure it from fields. Thus, diverse analysis tools, including CORSIM, SYNCHRO, T7F, VISTRO, etc. have been utilized so far. However, each analysis tool may use a unique methodology in calculating control delays. Therefore, the estimated values of control delays may be different by the selection of an analysis tool, which has provided difficulties to traffic engineers in making solid judgments. METHODS : This study was initiated to verify the feasibility of diverse analysis tools, including HCM methodology, CORSIM, SYNCHRO, T7F, VISTRO, in calculating control delays by comparing estimated control delays with that measured from a field. RESULTS : As a result, the selected tools produced quite different values of control delay. In addition, the control delay value estimated using a calibrated CORSIM model was closest to that measured from the field. CONCLUSIONS : First, through the in-depth experiment, it was explicitly verified that the estimated values of control delay may depend on the selection of an analysis tool. Second, among the diverse tools, the value of control delay estimated using the calibrated microscopic traffic simulation model was most close to that measured from the field. Conclusively, analysts should take into account the variability of control delay values according to the selection of a tool in the case of signalized intersection analysis.