• Title/Summary/Keyword: Transwell

Search Result 158, Processing Time 0.022 seconds

Arsenic Trioxide Inhibits Cell Growth and Invasion via Down-Regulation of Skp2 in Pancreatic Cancer Cells

  • Gao, Jian-Kun;Wang, Li-Xia;Long, Bo;Ye, Xian-Tao;Su, Jing-Na;Yin, Xu-Yuan;Zhou, Xiu-Xia;Wang, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3805-3810
    • /
    • 2015
  • Arsenic trioxide (ATO) has been found to exert anti-cancer activity in various human malignancies. However, the molecular mechanisms by which ATO inhibits tumorigenesis are not fully elucidated. In the current study, we explored the molecular basis of ATO-mediated tumor growth inhibition in pancreatic cancer cells. We used multiple approaches such as MTT assay, wound healing assay, Transwell invasion assay, annexin V-FITC, cell cycle analysis, RT-PCR and Western blotting to achieve our goal. We found that ATO treatment effectively caused cell growth inhibition, suppressed clonogenic potential and induced G2-M cell cycle arrest and apoptosis in pancreatic cancer cells. Moreover, we observed a significant down-regulation of Skp2 after treatment with ATO. Furthermore, we revealed that ATO regulated Skp2 downstream genes such as FOXO1 and p53. These findings demonstrate that inhibition of Skp2 could be a novel strategy for the treatment of pancreatic cancer by ATO.

RNAi-induced K-Ras Gene Silencing Suppresses Growth of EC9706 Cells and Enhances Chemotherapy Sensitivity of Esophageal Cancer

  • Wang, Xin-Jie;Zheng, Yu-Ling;Fan, Qing-Xia;Zhang, Xu-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6517-6521
    • /
    • 2012
  • To analyze the growth, proliferation, apoptosis, invasiveness and chemotherapy sensitivity of EC9706 cells after K-Ras gene silencing, an expression carrier pSilencer-siK-Ras was constructed, and the EC9706 cell line was transfected using a liposome technique. Six groups were established: Control, siRNA NC (transfected with empty vector pSilencer2.1); Ras siRNA (transfected with pSilencer-siK-Ras2); Paclitaxel; Paclitaxel + siRNA NC; and Ras siRNA + Paclitaxel. After the treatment, RT-PCR, Western blotting, MTT assay, flow cytometry and the Transwell technique were used to assess expression of K-Ras mRNA and protein in EC9706 cells, as well as cell growth, proliferation, apoptosis and invasiveness. The effect of Paclitaxel chemotherapy was also tested. pSilencer-siK-Ras2 effectively down-regulated expression of K-Ras mRNA and protein in EC9706 cells, growth being significantly inhibited. Flow cytometry indicated obvious apoptosis of cells in the experimental group, with arrest in the G1 phase; cell migration ability was also reduced. After pSilencer-siK-Ras2 transfection or the addition of Paclitaxel, EC9706 cells were suppressed to different extents; the suppressive effect was strengthened by combined treatment. The results suggested that RNAi-induced K-Ras gene silencing could enhance chemotherapy sensitivity of esophageal cancer.

Antitumor Activity of Histone Deacetylase Inhibitor Trichostatin A in Osteosarcoma Cells

  • Cheng, Dong-Dong;Yang, Qing-Cheng;Zhang, Zhi-Chang;Yang, Cui-Xia;Liu, Yi-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1395-1399
    • /
    • 2012
  • Background: Histone deacetylase (HDAC) inhibitors have been reported to induce cell growth arrest, apoptosis and differentiation of tumor cells. The present study aimed to examine the effects of trichostatin A (TSA), one such inhibitor, on the cell cycle, apoptosis and invasiveness of osteosarcoma cells. Methods: MG-63 cells were treated with TSA at various concentrations. Then, cell growth and apoptosis were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2H-tetrazolium bromide (MTT) and TUNEL assays, respectively; cell cycling was assessed by flow cytometry; invasion assays were performed with the transwell Boyden Chamber system. Results: MTT assays revealed that TSA significantly inhibited the growth of MG-63 cells in a concentration and time dependent manner. TSA treated cells demonstrated morphological changes indicative of apoptosis and TUNEL assays revealed increased apoptosis of MG-63 cells after TSA treatment. Flow cytometry showed that TSA arrested the cell cycle in G1/G2 phase and annexin V positive apoptotic cells increased markedly. In addition, the invasiveness of MG-63 cells was inhibited by TSA in a concentration dependent manner. Conclusion: Our findings demonstrate that TSA inhibits the proliferation, induces apoptosis and inhibits invasiveness of osteosarcoma cells in vitro. HDAC inhibitors may thus have promise to become new therapeutic agents against osteosarcoma.

Silencing of PDK1 Gene Expression by RNA Interference Suppresses Growth of Esophageal Cancer

  • Yu, Jing;Chen, Kui-Sheng;Li, Ya-Nan;Yang, Juan;Zhao, Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4147-4151
    • /
    • 2012
  • The current study was conducted to explore the inhibitory effects of a small interfering RNA (siRNA) on 3-phosphoinositide-dependent protein kinase 1 (PDK1) expression in esophageal cancer 9706 (EC9706) cells and the influence on their biological behavior. After transfection of a synthesized PDK1 siRNA, PDK1 mRNA and protein expression and the phosphorylation level of the downstream Akt protein were assessed using RT-PCR and Western blot analysis. Proliferation, apoptosis, cell invasion and in vivo tumor formation capacity were also investigated using MTT, flow cytometry, Transwell invasion trials, and nude mouse tumor transplantion, respectively. PDK1 siRNA effectively suppressed PDK1 mRNA and protein expression, and down-regulated the phosphorylation level of the Akt protein in the EC9706 cells (P < 0.05). It also inhibited cell proliferation and invasion, and promoted apoptosis; such effects were particularly obvious at 48 h and 72 h after transfection (P < 0.05). Growth of transplanted tumors was inhibited in nude mice, with decreased PDK1 expression in tumor tissues. PDK1 may be closely correlated with proliferation, apoptosis and invasion of esophageal cancer cells and thus may serve as an effective target for gene therapy.

Platycodin D Induces Apoptosis, and Inhibits Adhesion, Migration and Invasion in HepG2 Hepatocellular Carcinoma Cells

  • Li, Ting;Xu, Wen-Shan;Wu, Guo-Sheng;Chen, Xiu-Ping;Wang, Yi-Tao;Lu, Jin-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1745-1749
    • /
    • 2014
  • Background: Platycodin D (PD), a triterpenoid saponin isolated from the Chinese medicinal herb Platycodonis radix, possesses anti-cancer effects in several cancer cell lines. The aim of this study was to evaluate its anticancer activities in hepatocellular carcinoma cells. Materials and Methods: MTT and colony formation assays were performed to evaluate cell proliferation, along with flow cytometry and Western blotting for apoptosis. Cell adhesion was tested by observing cellular morphology under a microscope, while the transwell assay was employed to investigate the cell migration and invasion. Results: PD concentration-dependently inhibited cell proliferation in both HepG2 and Hep3B cells, and significantly suppressed colony formation and induced apoptosis in HepG2 cells. The protein levels of cleaved poly ADP-ribose polymerase (PARP) and Bax were up-regulated while that of survivin was down-regulated after treatment with PD. Moreover, PD not only obviously suppressed the adhesion of HepG2 cells to Matrigel, but also remarkably depressed their migration and invasion induced by 12-O-tetradecanoylphorbol 13-acetate (TPA). Conclusions: PD presents anti-cancer potential in hepatocellular carcinoma cells via inducing apoptosis, and inhibiting cell adhesion, migration and invasion, indicating promising features as a lead compound for anti-cancer agent development.

Overexpression of RUNX3 Inhibits Malignant Behaviour of Eca109 Cells in Vitro and Vivo

  • Chen, Hua-Xia;Wang, Shuai;Wang, Zhou;Zhang, Zhi-Ping;Shi, Shan-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1531-1537
    • /
    • 2014
  • Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene whose reduced expression may play an important role in the development and progression of esophageal squamous cell cancer (ESCC). The aim of this study was to investigate the clinical relevance of RUNX3 in ESCC patients and effects of overexpression on biological behaviour of Eca109 cells in vitro and in vivo. Immunohistochemistry was performed to detect the clinical relevance of RUNX3 and lymph node metastasis in 80 ESCC tissues and 40 non-cancerous tissues using the SP method. RT-PCR and Western blotting were applied to assess the RUNX3 level and verify the Eca109 cell line with stable overexpression. Localization of RUNX3 proteins was performed by cell immunofluorescence. CCK-8 and Scrape motility assays were used to determine proliferation and migration and the TUNEL assay to analyze cell apoptosis. Invasive potential was assessed in cell transwell invasion experiments. In nude mice, tumorigenesis in vivo was determined. Results showed decreased expression of RUNX3 in esophageal tissue to be significantly related to lymph node metastasis (LNM) (P<0.01). In addition, construction of a recombinant lentiviral vector and transfection into the human ESCC cell line Eca109 demonstrated that overexpression could inhibit cell proliferation, migration and invasion, and induce apoptosis. The in vivo experiments in mice showed tumorigenicity and invasiveness to be significantly reduced. Taken together, our studies indicate that underexpression of RUNX3 in human ESCC tissue is significantly correlated with progression. Restoration of RUNX3 expression significantly inhibits ESCC cells proliferation, migration, invasion and tumorigenesis.

MiR-886-5p Inhibition Inhibits Growth and Induces Apoptosis of MCF7 Cells

  • Zhang, Lei-Lei;Wu, Jiang;Liu, Qiang;Zhang, Yan;Sun, Zhu-Lei;Jing, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1511-1515
    • /
    • 2014
  • Background and Aims: To explore the molecular mechanisms of miR-886-5p in breast cancer., we examined roles in inhibiting growth and migration of MCF-7 cells. Methods: MiR-886-5p mimics and inhibitors were used to express or inhibit MiR-886-5p, respectively, and MTT and clone formation assays were used to determine the survival and proliferation. Hoechst 33342/ PI double staining was applied to detect apoptosis. The expression of caspase-3, caspase-8, caspase-9, MT1-MMP, VEGF-C and VEGF-D was detected by Western blotting, and the levels of MMP2 and MMP9 secreted from MCF-7 cells were assessed by ELISA. MCF-7 cell migration was determined by wound healing and Transwell assays. Results: We found that the growth of MCF-7 cells was inhibited upon decreasing miR-886-5p levels. Inhibiting miR-866-5p also significantly induced apoptosis and decreased the migratory capacity of these cells. The expression of VEGF-C, VEGF-D, MT1-MMP, MMP2, and MMP9 was also found to be decreased as compared to controls. Conclusions: Our data show that downregulation of miR-886-5p expression in MCF-7 cells could significantly inhibit cell growth and migration. This might imply that inhibiting miR-886-5p could be a therapeutic strategy in breast cancer.

Silencing of Lysyl Oxidase Gene Expression by RNA Interference Suppresses Metastasis of Breast Cancer

  • Liu, Jian-Lun;Wei, Wei;Tang, Wei;Jiang, Yi;Yang, Hua-Wei;Li, Jing-Tao;Zhou, Xiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3507-3511
    • /
    • 2012
  • Objective: The aim of this study was to investigate possible mechanisms of LOX gene effects on invasion and metastasis of breast cancer cells by RNA interference. Methods: LOX-RNAi-LV was designed, synthesized, and then transfected into a breast cancer cell line (MDA-MB-231). Expression of LOX, MMP-2 and MMP-9 was determined by real-time PCR, and protein expression of LOX by Western blotting. Cell migration and invasiveness were assessed with Transwell chambers. A total of 111 cases of breast cancer tissues, cancer-adjacent normal breast tissues, and 20 cases of benign lesion tissues were assessed by immunohistochemistry. Results: Expression of LOX mRNA and protein was suppressed, and the expression of MMP-2 and MMP-9 was significantly lower in the RNAi group than the control group (P<0.05), after LOX-RNAi-LV was transfection into MDA-MB-231 cells. Migration and invasion abilities were obviously inhibited. The expression of LOX protein in breast cancer, cancer-adjacent normal breast tissues and benign breast tumor were 48.6% (54/111), 26.1% (29/111), 20.0% (4/20), respectively, associations being noted with clinical stage, lymph node metastasis, tumor size and ER, PR, HER2, but not age. LOX protein was positively correlated with MMP-2 and MMP-9. Conclusion: LOX displayed an important role in invasion and metastasis of breast cancer by regulating MMP-2 and MMP-9 expression which probably exerted synergistic effects on the extracellular matrix (ECM).

Targeting of COX-2 Expression by Recombinant Adenovirus shRNA Attenuates the Malignant Biological Behavior of Breast Cancer Cells

  • Tu, Bo;Ma, Ting-Ting;Peng, Xiao-Qiong;Wang, Qin;Yang, Hong;Huang, Xiao-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8829-8836
    • /
    • 2014
  • Background: Cyclooxygenase-2 (COX-2), considered to have tumor-promoting potential, is highly expressed in a variety of tumors, including breast cancer. Since the functions and action mechanisms of COX-2 in breast cancer have not been fully elucidated, in the present study, the effects of target inhibiting COX-2 with recombinant adenovirus Ad-COX-2-shRNA on malignant biological behavior were investigated in representative cell lines. Materials and Methods: Breast cancer MDA-MB-231 and MCF-7 cells were transfected with Ad-COX-2-shRNA and COX-2 expression was tested by RT-PCR and Western blotting. Changes in proliferation, apoptosis and invasion of breast cancer cells were detected with various assays including MTT, colony forming, flowcytometry and Transwell invasion tests. The expression of related proteins involved in the cell cycle, apoptosis, invasion and signaling pathways was assessed by Western blotting. Results: COX-2 expression was significantly reduced in both breast cancer cell lines infected with Ad-COX-2-shRNA, with obvious inhibition of proliferation, colony forming rate, G2/M phase passage and invasion, as well as induction of apoptosis, in MDA-MB-231 and MCF-7 cells, respectively. At the same time, proteins related to the cell cycle, anti-apoptosis and invasion were significantly downregulated. In addition, c-myc expression and phosphorylation activation of Wnt/${\beta}$-catenin and p38MAPK pathways were reduced by the Ad-COX-2-shRNA. Conclusions: COX-2 expression is associated with proliferation, apoptosis and invasion of breast cancer cells, and its mechanisms of action involve regulating expression of c-myc through the p38MAPK and Wnt/${\beta}$-catenin pathways.

AZD1480 Can Inhibit the Biological Behavior of Ovarian Cancer SKOV3 Cells in vitro

  • Sun, Zhao-Ling;Tang, Ya-Juan;Wu, Wei-Guang;Xing, Jun;He, Yan-Fang;Xin, De-Mei;Yu, Yan-Li;Yang, Yang;Han, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4823-4827
    • /
    • 2013
  • Objective: To study the mechanism of effects of AZD1480 on the SKOV3 ovarian cancer cell line. Methods: The MTT method was used to assess cellular proliferation, flow cytometry for cellular apoptosis, the scratch test to determine migration, transwell chamber assays to detect cellular invasion, plate clone experiments to detect the clone forming ability and Western blotting to determine p-STAT3 protein levels. Results: The proliferation rate, migration ability, invasiveness and the clone forming ability of SKOV3 cells were reduced after treatment with AZD1480, while apoptosis rate and chemotherapeutic susceptibility were increased. After treatment with AZD1480 plus cisplatin, the apoptosis rate increased significantly while the expression level of p-STAT3 protein was decreased. Conclusion: AZD1480 can inhibit the proliferation, invasion, metastasis and clone formation of SKOV3 cells, induce cellulsar apoptosis, increase the chemotherapeutic sensitivity and reduce the expression level of p-STAT3 protein.