• 제목/요약/키워드: Transverse strain

검색결과 399건 처리시간 0.141초

C0-type Reddy's theory for composite beams using FEM under thermal loads

  • Fan, Xiaoyan;Wu, Zhen
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.457-471
    • /
    • 2016
  • To analyze laminated composite and sandwich beams under temperature loads, a $C^0$-type Reddy's beam theory considering transverse normal strain is proposed in this paper. Although transverse normal strain is taken into account, the number of unknowns is not increased. Moreover, the first derivatives of transverse displacement have been taken out from the in-plane displacement fields, so that the $C^0$ interpolation functions are only required for the finite element implementation. Based on the proposed model, a three-node beam element is presented for analysis of thermal responses. Numerical results show that the proposed model can accurately and efficiently analyze the thermoelastic problems of laminated composites.

SUS304계열 강판의 동적인장특성 (Dynamic tensile characteristics of SUS304L steel sheets)

  • 김진성;허훈;이장욱;권태수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.360-363
    • /
    • 2007
  • This paper deals with the dynamic tensile characteristics of the steel sheets for structural members of a train. Train accidents occurs rarely but lead to many casualties and economical loss. Therefore the safety of the train becomes important during the train crash. The dynamic tensile characteristics of the steel sheets are indispensable to analyze the structural crashworthiness. Current research reports the stress-strain curves, fracture elongation and strain rate sensitivities evaluated at the various strain rates especially for SUS304L-ST and SUS304L-LT steel sheets. The results include the difference in the dynamic tensile characteristics of both rolling and transverse directions. Dynamic tensile tests were performed at the strain rates ranging from 0.003/sec to 200/sec using High Speed Material Testing Machine. The materials tested in this research shows interesting behavior at the low strain rates. The strain hardening exponent decreases remarkably while the yield strength increases.

  • PDF

Estimation of local ice load by analyzing shear strain data from the IBRV ARAON's 2016 Arctic voyage

  • Jeon, Mincheul;Choi, Kyungsik;Min, Jung Ki;Ha, Jung Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.421-425
    • /
    • 2018
  • The icebreaking research vessel ARAON performed ice field tests during her 2016 Arctic voyage. The ship is subjected to ice loads through ice-ship interaction processes. Local ice load acting on ARAON's bow section was measured by using stain gauges installed on the inner hull plates and transverse frames of bow section. In this paper the local ice loads at transverse frames estimated from shear strain data were compared to ice loads from hull plate pressures by using the influence coefficient method. In addition to the analysis of local ice loads, the characteristics of peak ice loads with the ship speed is also discussed. It is recommended that the local ice loads estimated by calculating shear forces acting on transverse frames may be useful in estimating local ice loads on the hull of ship.

Confinement Effects of High-Strength Reinforced Concrete Tied Columns

  • Han, Byum-Seok;Shin, Sung-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.133-142
    • /
    • 2006
  • An experimental study was conducted to investigate the effectiveness of transverse steel in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns($260{\times}260{\times}1,200mm$) were tested. Effects of such main variables as concrete compressive strength, configurations of transverse steel, transverse reinforcement ratio, spacing of transverse steel, and spalling of concrete cover were investigated. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse steel that can provide sufficiently high lateral confinement pressure. A consistent decrease in the deformability of the column test specimens was observed with increasing concrete strength. Test results of this study were compared with existing confinement models of modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi. The comparison indicates many existing models to predict the behavior of confined concrete overestimate or underestimate the ductility of confined concrete.

Headed Bars를 활용한 기둥의 구속효과에 대한 연구 (Confinement of Columns using Headed Bars)

  • 김영훈;윤영수;데니스미첼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.929-934
    • /
    • 2002
  • Eight full-scale columns were constructed and tested under monotonic axial compression loading to investigate the influence of headed bars on the confinement of the concrete. One column represented a column with no transverse reinforcement and another column had poor detailing and little confinement. A third column contained seismic hoops and crossties, which represented current detailing practice for significant confinement. A fourth column test is conducted to investigate the response with the seismic crossties replaced by headed bars. Two column specimens were constructed and tested with all of the transverse reinforcement provided by headed bars. These six specimens enabled an assesment of the effectiveness of headed bars in confining the concrete. It was found that the use of headed bars improved the confinement of the columns. Two additional specimens were constructed without any transverse reinforcement. These columns were later retrofitted, by drilling horizontal holes in the columns, adding special headed bars (one head fixed and the other head threaded) and then filling the drilled holes with epoxy. These retrofitted specimens with these added headed bars provided insight into the rehabilitation of older structures containing poorly detailed columns. All of the test specimens were instrumented to determine strain localization during failure and to monitor the strain in the longitudinal and transverse reinforcement.

  • PDF

Finite element modelling and design of partially encased composite columns

  • Chicoine, Thierry;Tremblay, Robert;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • 제2권3호
    • /
    • pp.171-194
    • /
    • 2002
  • In this paper, the behaviour of axially loaded partially encased composite columns made with light welded H steel shapes is examined using ABAQUS finite element modelling. The results of the numerical simulations are compared to the response observed in previous experimental studies on that column system. The steel shape of the specimens has transverse links attached to the flanges to improve its local buckling capacity and concrete is poured between the flanges only. The test specimens included 14 stubcolumns with a square cross section ranging from 300 mm to 600 mm in depth. The transverse link spacing varied from 0.5 to 1 times the depth and the width-to-thickness ratio of the flanges ranged from 23 to 35. The numerical model accounted for nonlinear stress-strain behaviour of materials, residual stresses in the steel shape, initial local imperfections of the flanges, and allowed for large rotations in the solution. A Riks displacement controlled strategy was used to carry out the analysis. Plastic analyses on the composite models reproduced accurately the capacity of the specimens, the failure mode, the axial strain at peak load, the transverse stresses in the web, and the axial stresses in the transverse links. The influence of applying a typical construction loading sequence could also be reproduced numerically. A design equation is proposed to determine the axial capacity of this type of column.

Effect of shape and amount of transverse reinforcement on lateral confinement of normal-strength concrete columns

  • Kim, Hyeong-Gook;Kim, Kil-Hee
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.79-92
    • /
    • 2022
  • The amount and configuration of transverse reinforcement are known as critical parameters that significantly affect the lateral confinement of concrete, the ductility capacity, and the plastic hinge length of RC columns. Based on test results, this study investigated the effect of the three variables on structural indexes such as neutral axis depth, lateral expansion of concrete, and ductility capacity. Five reinforced concrete column specimens were tested under cyclic flexure and shear while simultaneously subjected to a constant axial load. The columns were reinforced by two types of reinforcing steel: rectangular hoops and spiral type reinforcing bars. The variables in the test program were the shape, diameter, and yield strength of transverse reinforcement. The interactive influence of the amount of transverse reinforcement on the structural indexes was evaluated. Test results showed that when amounts of transverse reinforcement were similar, and yield strength of transverse reinforcement was 600 MPa or less, the neutral axis depth of a column with spiral type reinforcing bars was reduced by 28% compared with that of a column reinforced by existing rectangular hoops at peak strength. While the diagonal elements of spiral-type reinforcing bars significantly contributed to the lateral confinement of concrete, the strain of diagonal elements decreased with increases of their yield strength. It was confirmed that shapes of transverse reinforcement significantly affected the lateral confinement of concrete adjacent to plastic hinges. Transverse reinforcement with a yield strength exceeding 600 MPa, however, increased the neutral axis depth of normal-strength concrete columns at peak strength, resulting in reductions in ductility and energy dissipation capacity.

마이크로 자기탄성스트레인센서의 고감토화 (Improvement of Sensitivity in Micro Magnetoelastic Strain Sensors)

  • 신광호;허진;최헌일;김영학;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.423-426
    • /
    • 2001
  • Recently we have reported that the meander-patterned amorphous FeCoSiB films exhibit large change in their high frequency impedance by applying a strain, suggesting that the films are very attractive for making of a highly sensitive strain sensor elements. In this study, the effect of anisotropy on a change in the impedance of sputtered amorphous film patterns was investigated in the frequency range from 1MHz to 1GHz. As a function of applied strains, the high frequency impedance was extremely changed in the case of film patterns with transverse anisotropy due to excellent magnetomechanical coupling properties. As a summary, the maximum figure of merit f has measured about 2600 in the case of transverse anisotropy, and about 500 in the case of longitudinal anisotropy at 500 MHz. These values of F are approximately more than 1000 times higher than that of a conventional metal strain gauge (F 2) and more than 10 times higher than that of a semiconductor gauge (F 200).

  • PDF

머신 비전을 활용한 재료 변형 측정 기술 개발 (Development of Material Deformation Measurement System using Machine Vision)

  • 목은빈;정완진;이창환
    • 소성∙가공
    • /
    • 제32권1호
    • /
    • pp.20-27
    • /
    • 2023
  • In this study, the deformation of materials was measured using the video and tracking API of OpenCV. Circular markers attached to the material were selected the region of interests (ROIs). The position of the marker was measured from the area center of the circular marker. The position and displacement of the center point was measured along the image frames. For the verification, tensile tests were conducted. In the tensile test, four circular markers were attached along the longitudinal and transverse directions. The strain was calculated using the distance between markers both in the longitudinal and transverse direction. As a result, the stress-strain curve obtained using machine vision is compared to the stress-strain curve obtained from the DIC results. RMSE values of the strain from the machine vision and DIC were less than 0.005. In addition, as a measurement example, a bending angle and springback measurement according to bending deformation, and a moving position measurement of a punch, a blank holder, and a die by time change were performed. Using the proposed method, the deformation and displacement of the materials were measured precisely and easily.

축방향 이송속도를 갖는 현의 모델링 및 진동해석 (Dynamic Modeling and Analysis for an Axially moving String)

  • 신창호;정진태;한창수
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.838-842
    • /
    • 2000
  • The vibration of an axially moving string is studied when the string has geometric non-linearity and translating acceleration. Based upon the von karman strain theory, the equations of motion are derived considering the longitudinal and transverse deflection. The equation for the longitudinal vibration is linear and uncoupled, while the equation for the transverse vibration is non-linear and coupled between the longitudinal and transverse deflections. These equations are discretized by using the Galerkin approximation after they are transformed into the variational equations, i.e. the weak forms so that the admissible and comparison functions can be used for the bases of the longitudinal and transverse deflections respectively. With the discretized nonlinear equations, the time responses are investigated by using the generalized-$\alpha$ method.

  • PDF