• Title/Summary/Keyword: Transverse flow

Search Result 369, Processing Time 0.029 seconds

An Experimental Study on Velocity Profiles and Turbulence Intensity of Developing Turbulent Pulsating Flows in the Entrance Region of a Square Duct

  • Park, G.M.;Koh, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.235-242
    • /
    • 1993
  • The flow characteristics of developing turbulent pulsating flows are investigated experimentally in the entrance region of a square duct ($40mm{\times}40mm$ and 4,000mm). Mean velocity profiles, turbulence intensity and entrance length are measured by using a hot-wire anemometer system together with data acquisition and processing systems. It is found that the velocity waveforms are not changed in the fully developed flow region where that $x/Dh{\geq}40$. For turbulent pulsating flow, the turbulent components in the velocity waveforms increase as the dimensionless transverse position approaches the wall. Mean velocity profiles of the turbulent steady flows follow the one-seventh power law profile in the fully developed flow region. Turbulence intensity increases as the dimensionless transverse position increases from the center to the wall of the duct, and is slightly smaller in the accelerating phase than in the decelerating phase for the turbulent pulsating flows. The entrance length of the turbulent pulsating flow is about 40 times as large as the hydraulic diameter under the present experimental conditions.

  • PDF

A Study on the Comparison Between Experimental and Numerical Analysis for Developing Turbulent Steady Flows in the Entrance Region of a Square Duct (정4각덕트의 입구영역에서 난류정상유동의 실험해와 수치해의 비교에 관한 연구)

  • 고영하;박길문;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.236-245
    • /
    • 1997
  • The flow characteristics of developing turbulent steady flow are investigated numerically and experimentally in the entrance region of a square duct ($40 mm{\times}40 mm$ and 4, 000 mm). The numerical anaysis are incorporated by finite- volume discretization with staggered grid system and SIMPLE algorithm. The numerical solution are compared with experimental results of mean velocity profiles, turbulence intensity and entrance length. For turbulent steady flow, the turbulent components in the velocity waveforms increase as the dimensionless transverse position approaches the wall. Thrbulence intensity increases as the dimensionless transverse position increases from the center to the wall of the duct for the developing turbulent steady flows. The entrance length of the turbulent steady flow is about 40 times as large as the hydraulic diameter under the present experimental condition.

  • PDF

Numerical Study of Flow Characteristics in Static Mixers (정적믹서의 유동특성에 대한 수치적 연구)

  • Yang, Hei-Cheon;Park, Sang-Kyoo;Oh, Seung-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1957-1962
    • /
    • 2004
  • The objective of this study is to perform the numerical investigation of flow characteristics in static mixers. Simulations are carried out for mixers consisting of up to six Kenics and PPM elements placed end-to-end at an angle of $90^{\circ}$and for a range of Reynolds number($1{\leq}Re{\leq}100$). The pressure drop across a six-element Kenics mixer is computed and compared with the previous experimental correlations. The results are in good agreement with the previous correlations. The simulated flow field of Kenics mixer is extremely complex and contains regions of transverse flow that is dominated by the interaction of vortices produced by the mixer elements.

  • PDF

EEFORMATION BEHAVIOR OF STAINLESS STEEL-CLAD ALUMINUM SHEET METALS UNDER UNIAXIAL TENSION (스테인리스 강 클리드 알루미늄 판재의 일축인장시 변형거동)

  • 최시훈;김근환;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.69-75
    • /
    • 1995
  • The deformation behavior of stainless steel-clad aluminum sheet metals under uniaxial tension has been investigated. The differences in mechanical properties such as elastic modulus, flow stress and plastic strain ratio, of component layers of the composite sheet gave rise to warping of the tensile specimens. The warping has been analyzed by FEM and the total force and momentum equilibria. The analyzed radii of curvature of the warped specimens were smaller than the measured data possibly due to elastic recovery during unloading. The differences in mechanical properties may also give rise to transverse stresses in the component layers. The transverse stresses have been analyzed on the assumption of isostrain and by the FEM in which the warping has been taken into account. The transverse stresses calculated by the FEM were lower than those by the isostrain hypothesis due to stress relaxation by the warping and turned out to be negligible compared with the longitudinal stresses. Consequently, the flow stresses of the composite sheets follow the rule of mixtures.

  • PDF

Transverse vibration reduction at navigation bridge deck of the shuttle tanker using structural intensity analysis (진동 인텐시티 해석을 통한 원유운반선의 거주구 횡방향 진동 저감 연구)

  • Kim, Ki-Sun;Kim, Heui-Won;Joo, Won-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.251-255
    • /
    • 2012
  • Structural intensity has been mainly utilized to identify vibration energy flow in a vessel. In this paper, the structural intensity of a shuttle tanker subjected to H-moment of the main engine was calculated using a finite element model. From the analysis, it was found that the top-bracing elements, which support the main engine onto the hull structure to prevent the excessive transverse vibration of the main engine, play the role of the dominant path and sink for vibration energy flow from the main engine. Therefore, the structural intensity was controlled by the modification of stiffness and damping characteristics of the top-bracing elements. As a result, it is observed that the transverse vibration level at the center of navigation bridge deck decreased after the control of structural intensity.

  • PDF

Transverse variability of flow and sediment transport in estuaries with an estuarine dam

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.125-125
    • /
    • 2023
  • Estuarine dams are dams constructed in estuaries for reasons such as securing freshwater resources, controlling water levels, and hydroelectric power generation. These estuarine dams alter the flow of freshwater to the coastal ocean and the tidal properties of the estuaries which has implications for the estuaries' circulation and sediment transport. A previous study has analyzed the effect of estuarine dams on 1D (along-channel) circulation and sediment transport. However, the effect of estuarine dams on the transverse variability of along-channel and across-channel circulation and sediment transport has not been studied and is not known. In this study, a coupled hydrodynamic-sediment dynamic numerical model (COAWST) was used to analyze the transverse variability of along-channel and across-channel flow and sediment transport in estuaries with estuarine dams. The estuarine dam was found to change the 3D structure of circulation and sediment transport, and the result was found to depend on the estuarine type (i.e., strongly stratified (SS) or well-mixed (WM) estuary). The SS estuary had inflow in the channel and outflow over the shoals, consistent with estuarine circulation. Longer discharge interval reduced the estuarine circulation. The WM estuary had inflow over the shoals and outflow in the channel, consistent with tide-induced circulation. As the estuarine dam was located nearer to the estuary mouth, the tide-induced circulation was reduced and replaced with estuarine circulation. The lateral circualtion was the greatest in the tide-dominated estuaries. It was reduced and changed direction due to differential advection change as the dam was located nearer the mouth. Overall, the WM estuary transverse flow structure changed the most. Lateral sediment flux was important in all estuaries, particularly for transporting sediments to the tidal flats.

  • PDF

Numerical Study of Unsteady Supersonic Flow Behind a Rearward-Facing Step with Slot Injection (측면제트분사가 있는 후향계단 후류의 비정상초음속유동에 대한 수치적 연구)

  • Kim,Jong-Rok;Kim,Jae-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.97-103
    • /
    • 2003
  • Numerical research has been done for the transverse jet behind a rearward-facings step in turbulent supersonic flow without chemical reaction. Purpose of transverse jet is to enhance mixing of the fuel in the combustor. Two-dimensional unsteady flowfields generated by slot injection into supersonic flow are numerically simulated with the Navier-Stokes equations with two-equation k-$\varepsilon$ turbulence model. Numerical method is used high-order upwind TVD scheme. Eight cases are computed for different slot momentum flux ratios and slot position at downstream of the step. The flow is very similar to the cavity flow, because the jet acts as an obstacle. The numerical results thus show the periodic phenomenon.

Numerical Analysis of Dynamic Combustion in HyShot Scramjet Combustor with a Transverse Fuel Injection (수직 연료 분사기구를 포함하는 HyShot 스크램제트 연소기의 동적 연소 유동해석)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet combustor, where gaseous hydrogen is transversely injected into a supersonic cross flow. The corresponding altitude, angle of attack, and equivalence ratio are 35-23 km, $0^{\circ}$, and 0.426 respectively. Two-dimensional simulation reasonably predicts combustor inner pressure distribution and reveals periodic combustion characteristics of HyShot scramjet combustor. Altitude effects are also investigated and the strength of flow instability and subsonic boundary layer thickness affect the combustion efficiency according to altitudes. Frequency analyses provide the flow instability effects on the turbulent combustion in HyShot scramjet combustor.

  • PDF

Numerical Analysis of Dynamic Combustion in HyShot Scramjet Combustor with a Transverse Fuel Injection (수직 연료 분사기구를 포함하는 HyShot 스크램제트 연소기의 동적 연소 유동해석)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.79-85
    • /
    • 2007
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet combustor, where gaseous hydrogen is transversely injected into a supersonic cross flow. The corresponding altitude, angle of attack, and equivalence ratio are 35-23 km, $0^{\circ}$, and 0.426 respectively. Two-dimensional simulation reasonably predicts combustor inner pressure distribution and reveals periodic combustion characteristics of HyShot scramjet combustor. Altitude effects are also investigated and the strength of flow instability and subsonic boundary layer thickness affect the combustion efficiency according to altitudes. Frequency analyses provide the flow instability effects on the turbulent combustion in HyShot scramjet combustor.

  • PDF

Numerical Study of Slot Injection in Supersonic combustor (초음속 연소기내부의 측면제트분사에 대한 수치적 연구)

  • 김종록;김재수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.108-113
    • /
    • 2003
  • The numerical research has been done for the transverse jet behind a rearward- facing step in turbulent supersonic flow without chemical reaction. The purpose of transverse jet is used to improve mixing of the fuel in the combustor. Two- dimensional unsteady flowfields generated by slot injection into supersonic flow are numerically simulated by the integration of Navier-Stokes equation with two-equation k - $\varepsilon$ turbulence model. Numerical methods are used high-order upwind TVD scheme. Eight cases are computed, comprising slot momentum flux ratios and slot position at downstream of the step. The flow is very similar to the cavity flow, because the jet is like an obstacle. Therefore, the numerical results show the periodic phenomenon.

  • PDF