• Title/Summary/Keyword: Transverse dispersion coefficient

Search Result 14, Processing Time 0.02 seconds

Microstructure and Impactive Flexural Vibration Characteristics of Glass-Fabric/Epoxy Composite Beams (유리직물/에폭시 복합재료 보의 내부구조와 충격굽힘진동특성)

  • 서지웅;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.53.1-56
    • /
    • 1999
  • The vibration behavior of glass-fabric reinforced plastic(GFRP) composite beams subjected to various transverse impacts has been investigated as a function of fiber orientation and void fraction. Theoretical results of resonant frequency damping coefficient and modal amplitude dispersion using the Euler-beam theory were obtained along with the finite element analysis which were compared with experimental ones Consequently it was shown that the transverse vibration characteristics were largely affected by fiber orientation and void fraction.

  • PDF

Development of tracer concentration analysis method using drone-based spatio-temporal hyperspectral image and RGB image (드론기반 시공간 초분광영상 및 RGB영상을 활용한 추적자 농도분석 기법 개발)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun;Han, Eunjin;Kwon, Siyoon;Kim, Youngdo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.623-634
    • /
    • 2022
  • Due to river maintenance projects such as the creation of hydrophilic areas around rivers and the Four Rivers Project, the flow characteristics of rivers are continuously changing, and the risk of water quality accidents due to the inflow of various pollutants is increasing. In the event of a water quality accident, it is necessary to minimize the effect on the downstream side by predicting the concentration and arrival time of pollutants in consideration of the flow characteristics of the river. In order to track the behavior of these pollutants, it is necessary to calculate the diffusion coefficient and dispersion coefficient for each section of the river. Among them, the dispersion coefficient is used to analyze the diffusion range of soluble pollutants. Existing experimental research cases for tracking the behavior of pollutants require a lot of manpower and cost, and it is difficult to obtain spatially high-resolution data due to limited equipment operation. Recently, research on tracking contaminants using RGB drones has been conducted, but RGB images also have a limitation in that spectral information is limitedly collected. In this study, to supplement the limitations of existing studies, a hyperspectral sensor was mounted on a remote sensing platform using a drone to collect temporally and spatially higher-resolution data than conventional contact measurement. Using the collected spatio-temporal hyperspectral images, the tracer concentration was calculated and the transverse dispersion coefficient was derived. It is expected that by overcoming the limitations of the drone platform through future research and upgrading the dispersion coefficient calculation technology, it will be possible to detect various pollutants leaking into the water system, and to detect changes in various water quality items and river factors.

Performance Evaluation of Multilinear Regression Empirical Formula and Machine Learning Model for Prediction of Two-dimensional Transverse Dispersion Coefficient (다중선형회귀경험식과 머신러닝모델의 2차원 횡 분산계수 예측성능 평가)

  • Lee, Sun Mi;Park, Inhwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.172-172
    • /
    • 2022
  • 분산계수는 하천에서 오염물질의 혼합능을 파악할 수 있는 대표적인 인자이다. 특히 하수처리장 방류수 혼합예측과 같이 횡 방향 혼합에 대한 예측이 중요한 경우, 하천의 지형적, 수리학적 특성을 고려한 2차원 횡 분산계수의 결정이 필요하다. 2차원 횡 분산계수의 결정을 위해 기존 연구에서는 추적자실험결과로부터 경험식을 만들어 횡 분산계수 산정에 사용해왔다. 회귀분석을 통한 경험식 산정을 위해서는 충분한 데이터가 필요하지만, 2차원 추적자 실험 건수가 충분치 않아 신뢰성 높은 경험식 산정이 어려운 상황이다. 따라서 본 연구에서는 SMOTE기법을 이용하여 횡분산계수 실험데이터를 증폭시켜 이로부터 횡 분산계수 경험식을 산정하고자 한다. 또한 다중선형회귀분석을 통해 도출된 경험식의 한계를 보완하기 위해 다양한 머신러닝 기법을 적용하고, 횡 분산계수 산정에 적합한 머신러닝 기법을 제안하고자 한다. 기존 추적자실험 데이터로부터 하폭 대 수심비, 유속 대 마찰유속비, 횡 분산계수 데이터 셋을 수집하였으며, SMOTE 알고리즘의 적용을 통해 회귀분석과 머신러닝 기법 적용에 필요한 데이터그룹을 생성했다. 새롭게 생성된 데이터 셋을 포함하여 다중선형회귀분석을 통해 횡 분산계수 경험식을 결정하였으며, 새로 제안한 경험식과 기존 경험식에 대한 정확도를 비교했다. 또한 다중선형회귀분석을 통해 결정된 경험식은 횡 분산계수 예측범위에 한계를 보였기 때문에 머신러닝기법을 적용하여 다중선형회귀분석에 대한 예측성능을 평가했다. 이를 위해 머신러닝 기법으로서 서포트 벡터 머신 회귀(SVR), K근접이웃 회귀(KNN-R), 랜덤 포레스트 회귀(RFR)를 활용했다. 세 가지 머신러닝 기법을 통해 도출된 횡 분산계수와 경험식으로부터 결정된 횡 분산계수를 비교하여 예측 성능을 비교했다. 이를 통해 제한된 실험데이터 셋으로부터 2차원 횡 분산계수 산정을 위한 데이터 전처리 기법 및 횡 분산계수 산정에 적합한 머신러닝 절차와 최적 학습기법을 도출했다.

  • PDF

Development of Expert System for Water Quality Parameter Estimation Using Avenue (Avenue를 활용한 수질매개변수 추정 전문가 시스템 개발)

  • Bae, Duk-Hyo;Han, Gun-Yeon;Choi, Chul-Gwan
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.161-171
    • /
    • 2002
  • It has been known that the accurate estimates of 2-dimensional water quality model parameters are difficult for non-experts due to the complexity of theoretical background and input requirement and complicated inter-relationship between model Parameters. The main goal of this study is to Provide expert system for the optimal estimation of water quality model parameters, which is based on the development of chaining mechanism according to the sensitivity analysis of model parameter interactions and GUI interface system on ArcView Avenue. The selected study area is the 35.3- km main Han river starting from Paldang Dam site to the Point of Indo bridge and the tributary inflows including pollutant data are used for the system application and validation. The estimated main model parameters are 0.367 for transverse dispersion coefficient, 0.074 for and 0.162 for. It also shows that the simulated water quality constituents such as DO and BOD based on the estimated model parameters are well agreed with the observed ones. It can be concluded that the developed GIS-based expert system for water quality model parameter estimation and graphical representation of water quality analysis is useful for the scientific water quality management.