• Title/Summary/Keyword: Transverse change

Search Result 276, Processing Time 0.025 seconds

Coordinated Intra-Limb Relationships and Control in Gait Development Via the Angle-Angle Diagram (보행 시 연령에 따른 하지 관절 내 운동학적 협응과 제어)

  • Lee, Kyung-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.17-35
    • /
    • 2004
  • The purpose of this study is to explain developmental process of gait via angle-angle diagram to understand how coordinated relationships and control change with age. Twenty four female children, from one to five years of age were the test subjects for this study, and their results were compared to a control group consisting of twenty one adult females. The Vicon 370 CCD camera, VCR, video timer, monitor, and audio visual mixer was utilized to graph the gait cycle for all test subjects. Both coordinated Intra-limb relationships, and range of motion and timing according to quadrant were explained through the angle angle diagram. Movement in the sagittal plane showed both coordinated relationships and control earlier than movement in the coronal or transverse plane. In the sagittal plane, hip and Knee coordinated relationships developed first (from one year of age.) Coordinated relationships in the Knee and ankle and hip and ankle developed next, respectively. Both hip and ankle and knee and ankle development were inhibited by the inability of children to completely perform plantar flexion during the swing and initial double limb support phases. Children appeared to compensate for this by extending at their hip joint more than adults during the third phase, final double limb support. In many cases the angle angle diagram for children had a similar shape as adult's angle angle diagram. This shows that children can coordinate their movements at an early age. However, the magnitudes and timing of children's angle angle diagrams still varied greatly from adults, even at five years of age. This indicates that even at this age, children still do not possess full control of their movements.

Signal Pattern Analysis of Ground Penetrating Radar for Detecting Road Cavities (도로동공 탐지를 위한 지표투과레이더의 신호패턴에 관한 연구)

  • Yoon, Jin-Sung;Baek, Jongeun;Choi, Yeon Woo;Choi, Hyeon;Lee, Chang Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to detect road cavities using multi-channel 3D ground penetrating radar (GPR) tests owned by the Seoul Metropolitan Government. METHODS : Ground-penetrating radar tests were conducted on 204 road-cavity test sections, and the GPR signal patterns were analyzed to classify signal shape, amplitude, and phase change. RESULTS : The shapes of the GPR signals of road-cavity sections were circular or ellipsoidal in the plane image of the 3D GPR results. However, in the longitudinal or transverse direction, the signals showed mostly unsymmetrical (or symmetrical in some cases) parabolic shapes. The amplitude of the GPR signals reflected from road cavities was stronger than that from other media. No particular pattern of the amplitude was found because of nonuniform medium and utilities nearby. In many cases where road cavities extended to the bottom of the asphalt concrete layer, the signal phase was reversed. However, no reversed signal was found in subbase, subgrade, or deeper locations. CONCLUSIONS : For detecting road cavities, the results of the GPR signal-pattern analysis can be applied. In general, GPR signals on road cavity-sections had unsymmetrical hyperbolic shape, relatively stronger amplitude, and reversed phase. Owing to the uncertainties of underground materials, utilities, and road cavities, GPR signal interpretation was difficult. To perform quantitative analysis for road cavity detection, additional GPR tests and signal pattern analysis need to be conducted.

Effects of Fast Treadmill Training on Spinal Alignment and Muscles Thickness

  • Kim, Won-Gi;Kim, Yong-Seong;Kim, Yong-Beom;Jeong, Ho-Jin;Kim, Jae-Woon;Cho, Woon-Su
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.4
    • /
    • pp.175-180
    • /
    • 2017
  • Purpose: This study examined the effects of fast walking training on a treadmill on the spinal alignment and muscle thickness of normal adults. Methods: A total of 36 college students in their twenties participated in the study for eight weeks, and they were divided into the normal walking, fast walking, and speed change groups. All the groups were measured in a pre-test before training. The subjects performed exercise three times per week for six weeks. A post-test was conducted six weeks after training began, and a follow-up test was done two weeks after the training ended.Trunk and pelvic tilts were measured in Formetric 4D for the spinal alignment of the subjects. The muscle thickness was examined in the trunk with an ultrasound test. Repeated-measures ANOVA was conducted to test the main effects and interactions among the measurement variables according to time and group. Results: Significant differences were observed in the pelvic tilt according to time. There were significant differences in the external oblique, internal oblique, transverse abdominal muscle according to time. The post-test results showed significant differences in the left external oblique, internal oblique muscles between before training, six weeks into training, and two weeks after the completion of training. There were significant interactions in the left oblique muscles according to the time and group. Conclusion: These findings have some value for patient rehabilitation and clinical applications and interventions through walking training.

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

A Study on Application of Corrugated Invar Strake Edge in the Membrane Cargo Containment of LNG Carriers (LNG선 화물격납용기 Invar strake edge 이음부 형상 개선에 관한 연구)

  • Han, Jong-Man
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.74-80
    • /
    • 2009
  • The membrane of the LNG carriers consists of thin strips of INVAR(Fe-36%Ni) steel plates, and the junction between INVAR strips is fabricated by welding. Thousands of the raised edge joints, regularly spaced, are located around all the side of the tank corner near the transverse bulkhead, and TIG welding is manually made on the top of the raised edges. Since the thickness of all the laminated edge plies is extremely thin and the weld position is under a bad accessibility, highly skilled workers are required to perform welding relatively for a long welding time. An alternative scheme for the corner membrane fabrication is proposed in the study to improve the installation workability and thus productivity. The scheme replaces the welded edges with the preformed corrugation ones. A panel strip with regularly-spaced corrugations is installed at the corner instead of the individual flat strip of which edge is vertically raised to be welded with the adjacent strip. In the study, a series of the evaluation on the corrugated edge members was performed to assess the applicability to the real LNG carrier fabrication. Opening displacement at the raised edge was experimentally examined. Elastic stiffness regressed from the displacement was nearly same in both edge types. Edge displacement and local stresses were calculated under hydrostatic pressure and temperature change due to liquefied cargo. Fatigue test was performed on both corrugated and welded edge specimens consisting of two or five plies of invar strips. Fatigue strength of the corrugated specimens was not less than that of the welded specimens.

Regional Morphological and Mechanical Characteristics in the Human Thoracic Vertebral Trabecular Bones (인체 흉추 해면골의 영역별 형태학적 및 기계적 특성 연구)

  • Lee, Tae-Woo;Woo, Dae-Gon;Ko, Chang-Young;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.134-141
    • /
    • 2010
  • This study analyzed the regional morphological and mechanical characteristics of vertebrae by using micro-computed tomography (micro-CT) and micro finite element analysis (FEA). For the present study, the $12^{th}$ human thoracic vertebral bones (an 85-years female and a 48-years male) were used. These were scanned by using micro-CT. Structural parameters were evaluated from the acquired 20 image data for fifteen $4{\times}4mm^2$ regions (five regions in respective layers of superior, middle and inferior part) in the thoracic vertebral trabecular bones. $4{\times}4{\times}4mm^3$ cubic finite element models of each regions were created at $70{\mu}m$ voxel resolution to investigate effective modulus ($E^+$). The present study indicated that there were significant differences in morphological and elastic mechanical characteristics of each region. There are close relationship between effective modulus and structural model index (SMI) in the bone of the 48-years male and between effective modulus and bone volume fraction (BV/TV) in the bone of the 85-years female. In addition, the effective modulus of central regions is about 80% stiffer than that of lateral regions at transverse plane. These findings may be likely to explain the previous result that a change of loading distribution of the vertebral trabecular bones is caused by spinal curvature and nucleus pulpous degeneration of the intervertebral disc.

Analysis of Hydraulic Passage Efficiency of Ice-Harbor Type Fishway for Flowrate Change (유량변화에 따른 아이스하버식 어도의 수리학적 이동효율 분석)

  • Jo, Jae An;Han, Eun Jin;Kim, Young Do;Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1841-1850
    • /
    • 2013
  • The various types of fishways are installed at the multi-functional weirs in the four major rivers to minimize the negative effect due to the construction of the transverse structures. The movable weir was installed at the upstream of the ice-harbor type artificial fishway of the Dalseong weir in the Nakdong river, which can control the fishway flowrate regardless of the river flowrate. The incoming flowrate to the artificial fishway is closely related with the hydraulic characteristics that dominate the fish passage efficiency. Thus, it is crucial to find out the weir operation rule for properly sustaining efficient fish-passage, such as the optimized flowrate. In this study, the FLOW-3D was used to analyze and compare the various hydraulic characteristics associated with the passage efficiency, based upon the given different flowrate, and subsequently provide the optimized flowrate for the fishway movable weir to maintain the best efficient flow condition for the fish-passage.

Stability of fishing vessel according to the LED luring lamp installation (LED집어등 설치에 따른 연안 채낚기 어선의 복원성능)

  • Jeong, Seong-Jae;An, Heui-Chun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.623-632
    • /
    • 2014
  • In this study, the stability of fishing vessels get some change in accordance with the installation of LED luring lamp in comparison with metal halide luring lamp were investigated. Inclining test for 9.77 ton class of squid jigging and hair-tail angling vessel was performed in order to make a stability evaluation. A performance analysis of the target vessels to the stability on the basis of KST-SHIP program was evaluated. The results were as follows in this study. The stability of the fishing vessel by a metal halide such as LED and the like according to the result obtained by the inclining test is a slightly present difference, and the stability is not affected. The fishing vessel with LED lamp installed satisfies all the stability criteria specified in law and IMO rule. Compared to the metal halide LED lamp the increase of the height of the center of gravity and the initial transverse metacenter was caused. Due to the LED installation, the somewhat wider wind area of the waterline, which appears as a result, does not lead to an actual increase in rolling period. But then it is necessary to be designed on that the LED lamp shape reduces wind pressure area. Because of LED lamp installation, the GM value of vessels is increasing faster rolling cycle so causes a decrease in the sense that the crew is aboard.

A study on wear mechanism of tube fretting affected by support shapes (지지부 형상에 따른 튜브 프레팅 마멸기구의 연구)

  • Lee, Yeong-Ho;Kim, Hyeong-Gyu;Ha, Jae-Uk
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.73-79
    • /
    • 2002
  • Fretting wear test in room temperature air was performed to evaluate the wear mechanism of fuel rod using a fretting wear tester, which has been developed for experimental study. The main focus was to compare the wear behaviors of fuel rod against support springs at different contact geometries (i.e. concave and convex) and slip directions (axial and transverse). The wear on the tube was examined by the surface roughness tester, which measures the volume. The result indicated that with change of contact geometry from 5N of normal load to 0.1mm gap, wear volume of tube Increased in the condition of concave spring, but slowly decreased in convex spring. From the results of SEM observation, wear mechanism of each test condition was also depend on the above contact parameters. The wear mechanism of each test condition in room temperature air is discussed.

  • PDF

Radial and Circumferential Variations in Hygroscopicity and Diffusion Coefficients within a Tree Disk

  • Kang, Wook;Chung, Woo Yang;Eom, Chang Deuk;Han, Yeon Jung;Yeo, Hwan Myeong;Jung, Hee Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.29-38
    • /
    • 2007
  • This study was undertaken to investigate the variation of equilibrium moisture content (EMC) in transverse direction and three different directional (longitudinal, radial, and tangential) linear movements, and diffusion coefficients within a tree disc of Korean red pine (pinus densiflora). The EMC gradually increased in heartwood from pith. Therefore, the chemical components might differ even in heartwood and the radial variation in EMC might have a close relationship with the cellulose content within a cross section. The specific gravity increases gradually from pith and the porosity has not direct influence on the variation of EMC within a tree disk. Both the radial and tangential diffusion coefficients exhibited clear trend of increase from pith. The EMC change (${\Delta}EMC$) and tangential diffusion coefficient were close to be axisymmetrical but others were deviated from axisymmetry. The diffusion coefficient decreases with decreasing an activation energy and specific gravity, The diffusion coefficient increased with increasing ${\Delta}EMC$ and hygroscopicity of wood might be inversely proportional to the activation energy, The fJEMC may depend on the chemical constituents of cellulose, hemicellulose and lignin. As the number of sorption sites and sorption capacity of wood increase, therefore, it might be assumed that the hygroscopicity of wood increases while activation energy decreases. Modeling physico-mechanical behavior of wood, the variations should be considered to improve the accuracy.