• 제목/요약/키워드: Transverse Reinforcement

검색결과 417건 처리시간 0.031초

횡보강근 배근형상에 따른 RC 기둥의 연성에 관한 실험적 연구 (Experimental Study on Ductility of RC Columns According to Configuration of Transverse Reinforcement)

  • 김민준;김도진;김상우;이정윤;김길희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권6호
    • /
    • pp.18-25
    • /
    • 2012
  • 이 연구에서는 횡보강근의 배근형상에 따른 철근콘크리트 기둥의 휨 연성을 평가하였다. 이를 위하여 총 8체의 철근콘크리트 기둥 실험체를 휨 실험하였다. 실험변수는 횡보강근의 배근형상과 항복강도 및 횡보강근량으로 하였다. 실험체는 $250{\times}250mm$ 단면을 가지도록 계획하였으며, 휨 파괴를 유도하기 위하여 전단경간비를 4.1로 계획하였다. 이 실험에서는 일정한 축하중과 함께 반복 횡하중을 실험체에 가력하였다. 실험결과, 제안된 횡보강근 배근형상을 가지는 실험체가 기존 띠철근을 가지는 실험체보다 더 높은 연성과 에너지 소산 능력을 나타냄을 확인할 수 있었다.

철근콘크리트 기둥에서 원형전단철근의 유효전단강도 (Effective Shear Strength of Circular Transverse Reinforcement in Reinforced Concrete Columns)

  • 하태훈;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.271-276
    • /
    • 2002
  • Existing design equations generally overestimate the shear strength of the circular transverse reinforcement. This is due to the simplification of the discrete distribution of the reinforcement to the continuous one and the inappropriate application of the classical truss model to the circular section, which is different in shear-resisting component from the rectangular section. The present study introduces a new model considering the starting point of the diagonal crack, the number of transverse reinforcing bars crossing the crack and the effective strength component of the transverse resistance. This model leads to a simple design equation which is derived using the linear regression method and is in agreement with the lower bound of exact strength curve.

  • PDF

초고강도 RC 기둥의 이력특성에 관한 실험적 연구 (Hysteric Behavior of Ultra-High Strength RC Columns)

  • 김종근;안종문;한범석;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.31-34
    • /
    • 2005
  • An experimental investigation was conducted to examine the hysteric behavior of Ultra-High strength concrete columns for the requirement of ACI provision. Seven 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section $300\times300mm$ and the shear span ratio 4. The main variables are axial load ratio, configuration and volumetric ratio of transverse reinforcement. It has been found that the behavior of columns was affected by axial load ratio rather than the amount and the configuration of transverse reinforcement. Consequently, to secure the ductile behavior of 100MPa Ultra-High strength concrete columns, ACI provision for the requirement of transverse steel may considered axial level and the detail of transverse reinforcement.

  • PDF

탄소섬유쉬트로 횡보강된 콘크리트 압축부재의 보강성능에 관한 연구 (Reinforcement Efficiency of Concrete Compressive Members Confined with Carbon Fiber Sheet)

  • 성시문;강상용;임재형;이원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.835-840
    • /
    • 2002
  • The purpose of this study is to analyze the reinforcement effect of the RC compressive member confined with carbon fiber sheets and to suggest better transverse confinement coefficient(k$_1$) than one's in the existing analysis equations. Showing amounts of CPS in terms of ratio of transverse reinforcement to cross-section, it comes to be possible to calculate the objective and quantitative reinforcement amounts and to estimate the overlapping length of CFS that can influence on all its confinement effect. The previous parameters were compared using the existing experimental test data, then analyzed for the merits and demerits of existing parameters through the coefficient of correlation(R). The proposed parameters were derived in such a way that established parameters and their combination were obtained from the analytical study and then determined by regression analysis using the previous test data.

  • PDF

철근콘크리트 교각 심부구속철근량의 비교연구 (comparative Study on confinement Steel Amount of RC Column Bent)

  • 이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.239-246
    • /
    • 1999
  • recently there have been many destructive seismic events in Kobe Japan in 1995 and in Northridge California USA in 1994. etc. The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. Comparing the earthquake magnitude in Korea with those in the west coast of the USA it may be said that the current seismic design requirements of the Korean Bridge Design Standard Specifications provides too conservation design results especially for transverse reinforcement details and amount in reinforced concrete columns. This fact usually makes construction problems in concrete casting due to transverse reinforcement congestion. And the effective stiffness Ieff depends on the axial load P(Ag{{{{ {f }_{ck } }}) and the longitudinal reinforcement ratio Ast/Ag and it is conservative to use the effective stiffness Ieff than the gross section moment Ig. Seismic design for transverse reinforcement content of concrete column is considered of extreme-fiber compression strain R-factor axial load and stiffness etc.

  • PDF

Transverse reinforcement for confinement at plastic hinge of circular composite hollow RC columns

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Park, Woo-Sun;Kang, Young Jong
    • Computers and Concrete
    • /
    • 제17권3호
    • /
    • pp.387-406
    • /
    • 2016
  • Confined transverse reinforcement was arranged in a plastic hinge region to resist the lateral load that increased the lateral confinement effect in the bridge substructure. Columns increased the seismic performance through securing stiffness and ductility. The calculation method of transverse reinforcements at plastic hinges is reported in the AASHTO-LRFD specification. This specification was only proposed for solid reinforced concrete (RC) columns. Therefore, if this specification is applied for another column as composite column besides the solid RC column, the column cannot be properly evaluated. The application of this specification is particularly limited for composite hollow RC columns. The composite hollow RC column consists of transverse, longitudinal reinforcements, cover concrete, core concrete, and an inner tube inserted in the hollow face. It increases the ductility, strength, and stiffness in composite hollow RC columns. This paper proposes a modified equation for economics and rational design through investigation of displacement ductility when applying the existing specifications at the composite hollow RC column. Moreover, a parametric study was performed to evaluate the detailed behavior. Using these results, a calculation method of economic transverse reinforcements is proposed.

Seismic performance of RC bridge piers reinforced with varying yield strength steel

  • Su, Junsheng;Dhakal, Rajesh Prasad;Wang, Junjie;Wang, Wenbiao
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.201-211
    • /
    • 2017
  • This paper experimentally investigates the effect of yield strength of reinforcing bars and stirrups on the seismic performance of reinforced concrete (RC) circular piers. Reversed cyclic loading tests of nine-large scale specimens with longitudinal and transverse reinforcement of different yield strengths (varying between HRB335, HRB500E and HRB600 rebars) were conducted. The test parameters include the yield strength and amount of longitudinal and transverse reinforcement. The results indicate that the adoption of high-strength steel (HSS) reinforcement HRB500E and HRB600 (to replace HRB335) as longitudinal bars without reducing the steel area (i.e., equal volume replacement) is found to increase the moment resistance (as expected) and the total deformation capacity while reducing the residual displacement, ductility and energy dissipation capacity to some extent. Higher strength stirrups enhance the ductility and energy dissipation capacity of RC bridge piers. While the product of steel yield strength and reinforcement ratio ($f_y{\rho}_s$) is kept constant (i.e., equal strength replacement), the piers with higher yield strength longitudinal bars are found to achieve as good seismic performance as when lower strength bars are used. When higher yield strength transverse reinforcement is to be used to maintain equal strength, reducing bar diameter is found to be a better approach than increasing the tie spacing.

Headed Bars를 활용한 기둥의 구속효과에 대한 연구 (Confinement of Columns using Headed Bars)

  • 김영훈;윤영수;데니스미첼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.929-934
    • /
    • 2002
  • Eight full-scale columns were constructed and tested under monotonic axial compression loading to investigate the influence of headed bars on the confinement of the concrete. One column represented a column with no transverse reinforcement and another column had poor detailing and little confinement. A third column contained seismic hoops and crossties, which represented current detailing practice for significant confinement. A fourth column test is conducted to investigate the response with the seismic crossties replaced by headed bars. Two column specimens were constructed and tested with all of the transverse reinforcement provided by headed bars. These six specimens enabled an assesment of the effectiveness of headed bars in confining the concrete. It was found that the use of headed bars improved the confinement of the columns. Two additional specimens were constructed without any transverse reinforcement. These columns were later retrofitted, by drilling horizontal holes in the columns, adding special headed bars (one head fixed and the other head threaded) and then filling the drilled holes with epoxy. These retrofitted specimens with these added headed bars provided insight into the rehabilitation of older structures containing poorly detailed columns. All of the test specimens were instrumented to determine strain localization during failure and to monitor the strain in the longitudinal and transverse reinforcement.

  • PDF

Seismic performance of exterior R/C beam-column joint under varying axial force

  • Hu, Yanbing;Maeda, Masaki;Suzuki, Yusuke;Jin, Kiwoong
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.623-635
    • /
    • 2021
  • Previous studies have suggested the maximum experimental story shear force of beam-column joint frame does not reach its theoretical value due to beam-column joint failure when the column-to-beam moment capacity ratio was close to 1.0. It was also pointed out that under a certain amount of axial force, an axial collapse and a sudden decrease of lateral load-carrying capacity may occur at the joint. Although increasing joint transverse reinforcement could improve the lateral load-carrying capacity and axial load-carrying capacity of beam-column joint frame, the conditions considering varying axial force were still not well investigated. For this purpose, 7 full-scale specimens with no-axial force and 14 half-scale specimens with varying axial force are designed and subjected to static loading tests. Comparing the experimental results of the two types of specimens, it has indicated that introducing the varying axial force leads to a reduction of the required joint transverse reinforcement ratio which can avoid the beam-column joint failure. For specimens with varying axial force, to prevent beam-column joint failure and axial collapse, the lower limit of joint transverse reinforcement ratio is acquired when given a column-to-beam moment capacity ratio.

지지부재로 이형철근을 설치하는 띠형 강보강재의 인발성능 평가 (The Evaluation for Pullout Performance of Steel Strip Reinforcements with Deformed-Bars as Transverse Members)

  • 정성규;김주형;조삼덕;이광우
    • 한국지반신소재학회논문집
    • /
    • 제12권4호
    • /
    • pp.77-86
    • /
    • 2013
  • 본 연구에서는 지지부재가 설치된 띠형 강보강재에 대한 실내인발시험을 수행하였다. 주문진 표준사를 사용하여 상대밀도 80%인 모형지반을 조성하였고, 지지부재의 개수를 0~2개로 구분하여 실내인발시험을 수행하였다. 상재압은 $50kN/m^2{\sim}200kN/m^2$까지 4단계로 구분하여 적용하였고, 1mm/min 속도로 강보강재를 인발하였다. 표면이 매끄러운 띠형 강보강재의 인발저항력은 보강재 표면과 지반 사이에서 마찰저항만 발현되기 때문에 인발 초기에 급격히 증가하다가 지속적으로 감소하는 경향을 나타낸다. 반면, 지지부재를 설치한 강보강재의 인발저항력은 마찰저항뿐만 아니라 수동저항도 함께 발현되므로 계속적으로 증가하는 것으로 나타났다. 보강재의 형태에 관계없이 최대인발저항은 상재압이 증가함에 따라 선형적으로 증가하는 것으로 나타났다. 지지부재를 1개 설치한 경우에 비해 지지부재를 2개 설치했을 때의 최대수동저항은 작게 나타났다. 이는 지지부재의 설치 간격 및 위치에 따라 지지부재에서 발현되는 수동저항의 크기가 다르기 때문에 나타나는 현상으로 판단되며, 지지부재 설치 위치 및 간격에 따른 추가 인발시험을 통해 확인할 필요가 있다.