• Title/Summary/Keyword: Transverse Effect

Search Result 1,150, Processing Time 0.037 seconds

Effect of Transverse Electric Fields on Fracture Behavior of Ferroelectric Ceramics (횡전기장이 강유전체 세라믹의 파괴거동에 미치는 영향)

  • Lee Jong Sik;Beom Hyeon Gyu;Jeong Kyoung Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2005
  • Effect of transverse electric fields on fracture behavior in ferroelectric ceramics under purely electrical loading is investigated. It is shown that the shape and size of the domain switching zone depend strongly on the ratio of the transverse electric field to the coercive electric field as well as the direction of the applied electric field. Under small-scale conditions, the crack-tip mode I and II stress intensity factors induced by ferroelectric domain switching are numerically obtained. The crack kinking in ferroelectric ceramics is also discussed.

On the Effect of Bulwarks on Transverse Stability of Box-type Vessels (상자형부유체의 횡복원성에 미치는 Bulwark 의 영향)

  • 윤명오;손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.11-29
    • /
    • 1986
  • As per the expanding needs of marine exploitation, many floating structures have been built. Among these, box-type vessel is considered as the most basic shape, to which plant barges and crane barges belong. Stability problem is very important for vessel. In order to increase transverse stability, this paper employs bulwarks along the upper deck sides of box-type vessels and the emphasis is laid upon the effect of bulwarks on transverse stability. In the present paper, the calculation method of heeling moment acting to the ship due to hydrostatic pressure is suggested, and actual procedures of the calculation for box-type vessels with bulwarks are shown. Furthermore corresponding model tests are carried out in small water tank. Through the comparison between calculated and measured values, it is confirmed that the preset calculation method is useful. And employing bulwarks on box-type vessels is very effective for increase of transverse stability at the heeling angles from about 15 degrees to about degrees.

  • PDF

EFFECT OF SURFACE CONTAMINATION ON THE TRANSVERSE STRENGTH OF THE RELINED DENTURE (첨상면 오염이 레진 의치상의 파절강도에 미치는 영향)

  • Kim, Jeong-Hyun;Bae, Jung-Soo;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.1
    • /
    • pp.11-18
    • /
    • 1993
  • Autopolymerising and visible light cured resin are used to reline dentures. But relined surface are easily contaminated by water or saliva in the mouth during clinical procedure. This study was to find out the effect of surface contamination on the transverse strength of the relined denture base. To accomplish this, the specimens of $65\times10\times3mm$ were made with heat-cured(Lucitone 199), visible light-cured(Triad), and autopolymerizing resin(Kooliner). Measurements of transverse strength were taken for each specimen. Specimens made of heat-cured resins, sizing $65\times10\times1.5mm$, were relined with heat-cured, light-cured, and autopolymerizing resin, respectively. Specimens relined with autopolymerizing and light-cured resins were further classified into not-contaminated, water-contaminated and saliva-contaminated groups. Again, measurements of the transverse strength were taken for each group. The results were as follows 1. The transverse strength of heat-cured resin was superior to all the other resins. 2. The transverse strength of each specimen decreased after relining in the following order, heat-cured, visible light-cured, and autopolymerizing resin. 3. Surface contamination produced an decrease in transverse strength, especially in the saliva contaminated group. According to these results, water or saliva contamination should be avoided during intraoral relining procedures.

  • PDF

Fatigue of Grout Type Transverse Joint

  • Kim, Yoon-Chil;Park, Jong-Jin
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.69-75
    • /
    • 2002
  • This is the second of two part series on experimental studies of grout type transverse joints. In this paper, grout-type transverse joints between precast concrete slabs are tested to study the fatigue behavior. The tests are per-formed with loading equipment designed and constructed especially in the lab to introduce shear fatigue failures on the joints of the test specimens with repeated loads. Non-prestressed as well as prestressed specimens are selected based on static tests and these specimens are studied to identify the effect of prestress on the fatigue strength of the grout type joint. A comparison between prestressed and non-prestressed specimens indicates that longitudinal prestressing is an effective method to increase fatigue strength of the transverse joints. Based on the fatigue test, a rational estimation of the fatigue strength is proposed to aid design of the grout-type transverse joints.

  • PDF

Evaluation of the Effect of Sedimentation Basin Structure on Hydrodynamic Behavior Using CFD (II): The Effect of Trough (CFD를 이용한 침전지 구조가 수리거동에 미치는 영향 평가(II): 트라프의 영향 중심으로)

  • Park, No-Suk;Lim, Jae-Lim;Lee, Sun-Ju;Kwon, Soon-Bum;Min, Jin-Hui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.758-766
    • /
    • 2005
  • This study was conducted to evaluate the effect of the transverse troughs on hydrodynamic behavior within the a certain full-scale sedimentation basin (flow rate/one basin; $10,000m^3/d$) using CFD simulation and ADV technique. In order to verify the CFD simulation, we measured the factual velocity at 36 points in the full-scale sedimentation basin, whose outlet structure is inadequate, with ADV technique. Both the CFD simulation and the ADV measurement results were in good accordance with each other. From the CFD simulation results of the existing basin, it was investigated that extreme upward flow occurs in the near of two transverse troughs. It was suspected that since the transverse troughs converted the open channel flow into the local closed pipe flow, the increased pressure in this local closed pipe flow region made the extreme upward flow. For solving this problems, it was suggested to modify transverse-typed launder into finger-typed launder and to install a longitudinal baffle in the center in this study. The CFD simulation results of all suggested amendments told us that the extreme upward flow, had occurred especially in the beneath of transverse troughs, was much less in the case of finger typed launder basin than that in the existing basin. Also, it was predicted that installing a longitudinal baffle made the fully developed flow which is more effective for sedimentation.

A Case Report of a Patient with Relapsing Transverse Myelitis Treated by Korean Medical Treatment (재발성 횡단성 척수염 환자의 한방치험 1례)

  • Lee, Ook Jae;Lee, Dong Geun;Lee, Ju Hee;Lee, Jung Hun;Kim, Seon Wook;Shin, Jeong Cheol
    • Journal of Acupuncture Research
    • /
    • v.31 no.4
    • /
    • pp.155-162
    • /
    • 2014
  • Objectives : The purpose of this study is to report the effect of Korean medical treatment on a patient with relapsing transverse myelitis. Methods : The patient was treated using acupuncture, pharmacopuncture, herbal medicine and other treatments including moxibustion and therapeutic exercise for 8 weeks. We evaluated the patient's motor grade with medical research council(MRC) scale and evaluated active range of motion in the hip, knee, and anke joint. Results : Through treatment the patient's motor grade and active range of motion all improved. Other symptoms such as lower limb hypoesthesia and residual urine sensation also showed improvement. Conclusions : We concluded that Korean medicine treatment had respectable effect in improving symptoms on the patient with relapsing transverse myelitis.

A discussion on simple third-order theories and elasticity approaches for flexure of laminated plates

  • Singh, Gajbir;Rao, G. Venkateswara;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.121-133
    • /
    • 1995
  • It is well known that two-dimensional simplified third-order theories satisfy the layer interface continuity of transverse shear strains, thus these theories violate the continuity of transverse shear stresses when two consecutive layers differ either in fibre orientation or material. The third-order theories considered herein involve four/or five dependent unknowns in the displacement field and satisfy the condition of vanishing of transverse shear stresses at the bounding planes of the plate. The objective of this investigation is to examine (i) the flexural response prediction accuracy of these third-order theories compared to exact elasticity solution (ii) the effect of layer interface continuity conditions on the flexural response. To investigate the effect of layer interface continuity conditions, three-dimensional elasticity solutions are developed by enforcing the continuity of different combinations of transverse stresses and/or strains at the layer interfaces. Three dimensional twenty node solid finite element (having three translational displacements as degrees of freedom) without the imposition of any of the conditions on the transverse stresses and strains is also employed for the flexural analysis of the laminated plates for the purposes of comparison with the above theories. These shear deformation theories and elasticity approaches in terms of accuracy, adequacy and applicability are examined through extensive numerical examples.

Analysis on the Hall Losses and Transverse Hall Current with Cu-Al Conductor Configuration (Cu-Al 전도체 형상에 따른 홀손실과 수직 홀전류 해석)

  • 김상걸;정동회;정일형;이호식;정택균;김태완;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1076-1079
    • /
    • 2001
  • An anolmalous magnetoresistance effect has been theoretically studied at very low temperatures for composite normal metal conductors. This anomalous behavior is due to transverse Hall currents in the composite which would result in increased losses and higher effective resistance for the composite conductor. In this paper, transverse current flow and effective resistance with Cu-Al conductor configuration were analyzed using FEM(finite element method) for predicting the Hall losses to be resulted in anomalous magnetoresistance effect. And they are plotted three dimensionally to be visualized.

  • PDF

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

An Experimental Study on Shear Strength of RCS System Beam-Column Jointswith Various Transverse Beam Sections (직교보 단면크기 변화에 따른 RCS구조 보-기둥 접합부의 전단내력에 관한 실험적 연구)

  • An, Jae-Hyeok;Park, Cheon-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.197-204
    • /
    • 2006
  • Recently, in order to realization of construction and economical saving, various studies are progressing. Also, the study on RCS system which is consisted of reinforced concrete column and steel beam is progressing actively. Actually, however, resisting mechanism of panel zone is influenced by transverse beams when the stress transfers inner panel to outer panel but existing literature didn't reflect the effect of transverse beams. This paper is to analyze the test result of five inner beam-column joints specimen with a variable such as web, flange thickness of transverse beam and face bearing plate(FBP) for RCS systems were tested under cyclic loadings conforming to NEHRP recommendation to investigate the effect of transverse beams and the structural performance of beam-column joints. From the test result, it was shown that transverse beams are effective to enhance the shear strength and structural performance of beam-column joints.