• Title/Summary/Keyword: Transverse Curvature

Search Result 101, Processing Time 0.025 seconds

Effect of Curvature on Deformation caused by Thermal Plate Forming (열간가공의 변형에 미치는 곡률의 영향에 관한 연구)

  • Lee, Joo-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • This study had the goal of investigating the effect of the curvature along the heating line on the transverse angular distortion of plates having an initial curvature from line heating. A thermo-elasto-plastic analysis was carried out using 54 models with various radii of curvature, plate thicknesses, and heating speeds. The results show the effect of the curvature along the heating line on the angular distortion in relation to changes in the magnitudes of the curvature, heating speed, and plate thickness. The present numerical results show that the time history of the angular distortion after cooling and reaching the final deformed shape for a plate having an initial curvature is quite different from that of a flat plate. This emphasized the importance of considering the curvature effect on the transverse angular distortion. From the viewpoint of the curvature effect on the deformation, it has been seen that the curvature does not affect the transverse shrinkage. In this study the predicting formula for the transverse angular distortion was derived through a regression analysis. It showed that as the curvature increased, the angular distortion was reduced because of the higher bending rigidity at the same heat input parameter, and the peak points moved toward the origin as the curvature increased.

Fingernail Configuration

  • Jung, Jin Woo;Kim, Kwang Seog;Shin, Jun Ho;Kwon, Yu Jin;Hwang, Jae Ha;Lee, Sam Yong
    • Archives of Plastic Surgery
    • /
    • v.42 no.6
    • /
    • pp.753-760
    • /
    • 2015
  • Background A number of conditions can alter a person's fingernail configuration. The ratio between fingernail width and length (W/L) is an important aesthetic criterion, and some underlying diseases can alter the size of the fingernail. Fingernail curvature can be altered by systemic disorders or disorders of the fingernail itself. Although the shape and curvature of the fingernail can provide diagnostic clues for various diseases, few studies have precisely characterized normal fingernail configuration. Methods We measured the W/L ratio of the fingernail, transverse fingernail curvature, hand length, hand breadth, and distal interphalangeal joint width in 300 volunteers with healthy fingernails. We also investigated whether age, sex, height, and handedness influenced the fingernail W/L ratio and transverse fingernail curvature. Results In women, fingernail W/L ratios were similar across all five fingers, and were lower than those in men. The highest value of transverse fingernail curvature was found in the thumb, followed by the index, middle, ring, and little fingers. Handedness and aging influenced transverse fingernail curvature, but not the fingernail W/L ratio. Fingernails were flatter on the dominant hand than on the non-dominant hand. The radius of transverse fingernail curvature increased with age, indicating that fingernails tended to flatten with age. Conclusions Our quantitative data on fingernail configuration can be used as a reference range for diagnosing various diseases and deformities of the fingernail, and for performing reconstructive or aesthetic fingernail surgery.

Impact Characteristics on the Laminated Shell for CF/Epoxy Composite (CF/Epoxy 복합재 적층쉘의 충격특성)

  • 양현수;정풍기;김영남;이종선
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.311-323
    • /
    • 2004
  • This paper is to study the energy absorption characteristics of CF/Epoxy(Carbon Fiber/Epoxy Resin) laminated shell with the various curvatures subjected to transverse impact loadings under the low impact velocity in consideration of design of structural members for use of transportation machine, which are consisted of the characteristics of high stiffness, strength and lightweight. The curvature radius are associated with the energy absorption characteristics of CF/Epoxy laminated shell which is brittleness material. In all tests, maximum load of CF/Epoxy laminated plate is higher than that of laminated shell with curvature, but maximum deflection is lower. And then absorbed energy of laminated shell with curvature is higher than laminated plate(curvature radius is unlimited), As curvature radius is increased, the absorbed energy is increased in laminated shell with curvature.

Ducti1ity, Evaluation of Circular Reinforced Concrete Piers with an Internal Steel Tube (강관 내무보강 중공교각의 연성도 평가)

  • 강영종;최진유;김도연;한택희
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.241-248
    • /
    • 2001
  • The ductility of circular hollow reinforced concrete columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. The results of analytical moment-curvature analyses for such hollow sections are compared with those for the circular section with the sane diameter. In this study, moment-curvature analyses are conducted with Mandel's confined concrete stress-strain relationship in which the effect of confinement is to increase the compression strength and ultimate strain of concrete. The moment-curvature analyses confirmed that the ductility is primarily influenced on the ultimate strain. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

  • PDF

PM Interaction Diagram of RC Columns considering Confinement Effect of Transverse Steels (횡방향철근 구속효과를 고려한 철근콘크리트 기둥의 축력-모멘트 상관도)

  • Son, Hyeok-Soo;Yang, Byung-Hong;Yoon, Cheol-Kyun;Lee, Jae-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.324-330
    • /
    • 2005
  • The flexural strength and ductility capacity of reinforced concrete columns are largely dependent on the amount of transverse steel. However, current design code does not specify the confinement effect of transverse steels in strength calculation. A non-linear moment-curvature analysis of RC column sections was conducted in order to develop PM interaction diagram considering transverse reinforcement effects. In this paper, a more reasonable application method of PM interaction diagram considering transverse steel amounts is introduced and proposed, based on moment-curvature non-linear analysis. Also, we proposed simplified method to use. easily in practical design.

  • PDF

Experimental Study on the Flow Behind an Axisymmetric Backward-Facing Step (축대칭 하향단 흐름에 대한 실험적 연구)

  • 김경천;부정숙;양종필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2463-2476
    • /
    • 1994
  • Local mean fluctuating velocity components were measured in the separating and reattaching axisymmetrc region of turbulent boundary layer over the wall of convex cylinders placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. Measurements were made with three different diameters of cylinders with four different diameters of cylinders with four different diameter of the obstructions. The range of Reynolds number based on step height was between 5,000 to 25,200. The study demonstrates that the reattachment length decreases with decreasing cylinder radius and is always shorter than that for the two-dimensional backward-facing step flow at the condition of the same step height. It was also observed that the turbulent kinetic energy in the recirculating region increases with an increases in the radius of convex curvature. The measured velocity field suggests that the transverse curvature can effect definitely the formation of corner eddy.

Confinement Steel based on Ductility Demand for RC Bridge Columns (철근콘크리트 교각의 연성요구량에 따른 심부구속철근량)

  • 손혁수;한상엽;조재원;이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.322-329
    • /
    • 2002
  • The purpose of this study is to develop a reasonable design for transverse confinement reinforcement considering ductility and required transverse confinement reinforcement of RC bridge columns. In order to develop relationships between the curvature ductility and the displacement ductility, the analysis for total 21,600 columns using the computer program NARCC have been carried out for parametric studies. Based on the results from the parametric studies, a correlation equation between the curvature ductility and the displacement ductility was developed. In addition, an equation for calculating the required transverse confinement reinforcement based on ductility demand was developed for seismic design of RC bridge columns. The equations proposed by this study will provide more reasonable and more effective design guidelines for performance-based seismic design of RC bridge columns.

  • PDF

Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects

  • Becheri, Tawfiq;Amara, Khaled;Bouazza, Mokhtar;Benseddiq, Noureddine
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1347-1368
    • /
    • 2016
  • In this article, an exact analytical solution for mechanical buckling analysis of symmetrically cross-ply laminated plates including curvature effects is presented. The equilibrium equations are derived according to the refined nth-order shear deformation theory. The present refined nth-order shear deformation theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments The most interesting feature of this theory is that it accounts for a parabolic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Buckling of orthotropic laminates subjected to biaxial inplane is investigated. Using the Navier solution method, the differential equations have been solved analytically and the critical buckling loads presented in closed-form solutions. The sensitivity of critical buckling loads to the effects of curvature terms and other factors has been examined. The analysis is validated by comparing results with those in the literature.

Curvature-dependence of the quantized conductance of a microscopic constriction in a two-dimensional electron gas

  • Park, Ji-Mo;Chung, Moon-Sung
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.1 no.1
    • /
    • pp.19-23
    • /
    • 1997
  • The conductance of a microscopic constriction in a two-dimensional electron gas is obtained as a function of both the constriction width and curvature. When the quantized conductance G at plateaus is given by the channel number Nc times the quantum unit 2e2/h, Nc is found to be a function of not only the width and but also the curvature. At a given W, Nc increases by one whenever the constriction curvature decreases by about a certain value. Until the shape smoothness becomes comparable to the two parallel boundaries, there exist more channels avaliable for conduction in a smaller-curvature constriction than in a larger-curvature one. This result is very interesting because Nc has been considered to depend on the width W only. this reflects that the number of the quantized transverse levels depend o both the constriction width and curvature in a two-dimensional electron gas.