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STABILITY OF TOTAL SCALAR CURVATURE AND THE

CRITICAL POINT EQUATION

Seungsu Hwang and Gabjin Yun

Abstract. We consider the total scalar curvature functional, and show

that if the second variation in the transverse traceless tensor direction is
negative, then the metric is Einstein. We also find the relation between

the second variation and the Lichnerowicz Laplacian.

1. Introduction

A symmetric 2-tensor h on a Riemannian manifold pM, gq is called transverse
if its (negative) divergence is vanishing, that is, if δh “ 0. One can find this
condition from the Einstein field equation [2]

rg ´
sg
2
g “ T,

where rg and sg denote the Ricci curvature and scalar curvature of the metric
g, respectively, and T is the stress-energy tensor. Since it is well-known that
δrg “ ´ 1

2dsg, we have δT “ 0. When we consider the momentum constraint
in the initial data problem for the vacuum Einstein equation, we often assume
that trgT “ 0 (cf. [3]). A symmetric 2-tensor h satisfying these two conditions
is called transverse-traceless (TT-tensor for short), a designation introduced by
Arnowitt, Deser, and Misner [1].

In this paper, we consider the total scalar curvature functional restricted to
the metrics of unit volume on a compact manifold and its second variation in
the TT-tensor direction. Denoting the set of smooth Riemannian structures
on a manifold M of unit volume by M1, the total scalar curvature functional
S : M1 Ñ R is defined by

Spgq “

ż

M

sgdvg.
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Mutō [6] proved the instability of total scalar curvature restricted to the
metrics of constant volume. Viaclovsky [10] showed that if pM, gq is a space
form of positive constant sectional curvature K, then the second variation is
strictly negative when restricted to transverse-traceless variations. If K “ 0,
then the second variation is strictly negative except for parallel h.

In this paper we derive a partial converse of the above results. Namely, if
the second variation is negative for any TT-tensor direction on a compact Rie-
manian manifold pM, gq with constant scalar curvature, then the metric should
be Einstein. As a result, in the case of the critical point equation (see below
for exact definition), we show that pM, gq is isometric to a standard sphere.
We also find the relation between the second variation and the Lichnerowicz
Laplacian.

Convention and notations: Basically, we follow curvature conventions and
operator conventions in [2] except only one the Laplace operator. Hereafter,
for convenience and simplicity, we denote curvatures rg, zg, sg, and the Hessian
and Laplacian of f , Dgdf,∆g by r, z, s, and Ddf,∆, respectively, if there is no
ambiguity. Here, zg is the traceless Ricci tensor of the metric. We also use the
notation x , y for metric g or inner product induced by g on tensor spaces.

2. First and second variations of the total scalar curvature

Let Mn be a smooth compact n-dimensional manifold and S2pMq be the
space of symmetric 2-tensors on M . Take a one parameter deformation of the
metric g up to order two lying in M1 given by

gt “ g ` th `
t2

2
ξ

for h, ξ P S2pMq. It is well known that

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

pgtq
ij “ ´gikgjlhkl(2.1)

and

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

dvgt “
1

2
ptrghqdvg.(2.2)

Differentiating all parts of volpgtq “
ş

M
dvgt ” 1 with respect to t, we have

0 “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

volpgtq “
1

2

ż

M

ptrghqdvg.(2.3)

Now, since

d

dt
dvgt “

1

2
trgtph ` tξqdvgt “

1

2
xgt, h ` tξygtdvgt

“
1

2
pgtq

ijpgtq
klpgtqikph ` tξqjldvgt “

1

2
pgtq

ijδilph ` tξqjldvgt
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“
1

2
pgtq

ijph ` tξqijdvgt ,

by (2.1) we obtain

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

dvgt “ ´
1

2
gikgjlhijhkldvg `

1

2
gijξijdvg `

1

4
gijhijptrghqdvg

“ ´
1

2
|h|2dvg `

1

2
ptrg ξqdvg `

1

4
ptrghq2dvg.

Therefore, by (2.2) and (2.3) we have
ż

M

ptrg ξqdvg “

ż

M

„

|h|2 ´
1

2
ptrghq2

ȷ

dvg.(2.4)

Note that the linearization of the scalar curvature is given by

s1
g ¨ h “ ´∆gptrghq ` δδh ´ xr, hy,(2.5)

and the linearization of the Ricci tensor is given by

r1
g ¨ h “

1

2
D˚Dh `

1

2
pr ˝ h ` h ˝ rq ´ R̊phq ´ δ˚δh ´

1

2
Ddptrghq(2.6)

for any symmetric 2-tensor h (see p. 63 in [2]). Here, δ “ ´div is the (neg-
ative) divergence defined by δhpXq “ ´

řn
i“1 DEihpEi, Xq for any vector X

and a local frame tEiu with the Riemannian connection D, and D˚Dh “

´DEi
DEi

h ` DDEi
Ei
h. Also, for any vector fields X and Y , R̊phqpX,Y q “

řn
i“1 hpRpX,EiqY,Eiq and h ˝ kpX,Y q “

řn
i“1 hpX,EiqkpEi, Y q.

From Spgtq “
ş

M
sgtdvgt , by the divergence theorem

d

dt
Spgtq “

ż

M

s1
gt ¨ ph ` tξq dvgt `

1

2
sgttrgtph ` tξq dvgt

“

ż

M

r´∆gptrgph ` tξqq ` δδph ` tξq ´ xrgt , h ` tξys dvgt

`

ż

M

1

2
sgttrgtph ` tξq dvgt

“

ż

M

x´rgt `
1

2
sgtgt, h ` tξygtdvgt .

Thus,

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

x´r1
g ¨ h `

1

2
ps1

g ¨ hqg `
1

2
sgh, hygdvg

`

ż

M

x´rg `
1

2
sgg, ξygdvg `

ż

M

x´rg `
1

2
sgg, hy

1

2
ptrghqdvg

`

ż

M

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

“

pgtq
ikpgtq

jl
‰

αijhkldvg.
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Here, αij “ ´rij ` 1
2sggij . Therefore, by (2.1)
ż

M

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

“

pgtq
ikpgtq

jl
‰

αijhkldvg

“

ż

M

´gipgkqhpqg
jlhkl

ˆ

´rij `
1

2
sggij

˙

dvg

´

ż

M

gikgjpglqhpqhkl

ˆ

´rij `
1

2
sggij

˙

dvg

“

ż

M

“

2xr, h ˝ hy ´ sg|h|2
‰

dvg.

Hence we may conclude that

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

x´r1
g ¨ h `

1

2
ps1

g ¨ hqg `
1

2
sgh, hyg ` x´rg `

1

2
sgg, ξyg

`
1

2
x´rg `

1

2
sgg, ptrghqhy `

“

2xr, h ˝ hy ´ sg|h|2
‰

dvg(2.7)

(see p. 129 of [2]). In particular, if g is Einstein, we have the following.

Lemma 2.1 (Proposition 4.55 of [2]). Assume g is an Einstein metric of unit

volume with gt “ g ` th ` t2

2 ξ P M1. Then we have

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

x´
1

2
D˚Dh ` R̊phq ` δ˚δh `

1

2
Ddptrghq

`
1

2

´

´∆ptrghq ` δδh ´
s

n
ptrghq

¯

g, hy

ȷ

dvg.

Proof. Since rg “ s
ng, it follows from (2.4) that

ż

M

x´rg `
1

2
sg, ξy dvg “

pn ´ 2qs

2n

ż

M

trg ξdvg

“
pn ´ 2qs

2n

ż

M

„

|h|2 ´
1

2
ptrghq2

ȷ

dvg

and
ż

M

“

2xr, h ˝ hy ´ sg|h|2
‰

dvg “
p2 ´ nqs

n

ż

M

|h|2dvg.

Also, we have

1

2

ż

M

x´rg `
1

2
sgg, ptrghqhy “

pn ´ 2qs

4n

ż

M

ptrghq2dvg.

Thus, by substituting (2.5) and (2.6) into (2.7), we obtain

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

x´
1

2
D˚Dh ´

1

2
pr ˝ h ` h ˝ rq`R̊phq`δ˚δh`

1

2
Ddptrghq

`
1

2

´

´∆ptrghq ` δδh ´
s

n
ptrghq

¯

g `
1

2
sh, hy

ȷ

dvg
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´
pn ´ 2qs

2n

ż

M

|h|2dvg.

Our lemma follows from r ˝ h “ h ˝ r “ s
nh. □

In general, the second variation is given by the following.

Lemma 2.2. Let pMn, gq be an n-dimensional compact Riemannian manifold

with constant scalar curvature. For gt “ g ` th ` t2

2 ξ P M1 for h, ξ P S2pMq,
we have

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

x´
1

2
D˚Dh ´

1

2
pr ˝ h ` h ˝ rq`R̊phq`δ˚δh`

1

2
Ddptrghq

`
1

2

´

´∆ptrghq ` δδh ´
s

n
ptrghq

¯

g, hy

ȷ

dvg

`

ż

M

„

x´r, ξy `
1

2
x´rg, ptrghqhy ` 2xr, h ˝ hy

ȷ

dvg.

Proof. Substituting (2.5) and (2.6) into (2.7), we obtain

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

x´
1

2
D˚Dh ´

1

2
pr ˝ h ` h ˝ rq`R̊phq`δ˚δh`

1

2
Ddptrghq

`
1

2

´

´∆ptrghq ` δδh ´
s

n
ptrghq

¯

g `
1

2
sh, hy

ȷ

dvg

`

ż

M

„

x´rg `
1

2
sgg, ξyg `

1

2
x´rg `

1

2
sgg, ptrghqhy

ȷ

dvg

`

ż

M

“

2xr, h ˝ hy ´ sg|h|2
‰

dvg.

Since gt P M1, we have
ş

M
ptrghqdvg “ 0, and by (2.4)

ż

M

x
1

2
sg, ξydvg “

s

2

ż

M

ptrg ξqdvg “
s

2

ż

M

„

|h|2 ´
1

2
ptrghq2

ȷ

dvg.

Therefore, we obtain

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

x´
1

2
D˚Dh ´

1

2
pr ˝ h ` h ˝ rq`R̊phq`δ˚δh`

1

2
Ddptrghq

`
1

2

´

´∆ptrghq ` δδh ´
s

n
ptrghq

¯

g, hy

ȷ

dvg

`

ż

M

„

x´r, ξy `
1

2
x´rg, ptrghqhy ` 2xr, h ˝ hy

ȷ

dvg.
□

Definition 2.3. A symmetric 2-tensor h is called transverse-traceless (TT for
short) if δh “ 0 and trgh “ 0.
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A variation gt “ g ` th ` pt2{2qξ P M1 with a TT-tensor h is called a TT-
variation. Note that if h is a TT-tensor, so that δh “ 0 “ trgh and g is
Einstein, by Lemma 2.1 we have

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

x´
1

2
D˚Dh ` R̊phq, hy

ȷ

dvg

“

ż

M

„

´
1

2
|Dh|2 ` xR̊phq, hy

ȷ

dvg.

Lemma 2.4. Suppose that g has constant scalar curvature and gt is a TT
variation, so that h “ g1

tp0q is transverse-traceless. Then

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

´
1

2
|Dh|2 ` xR̊phq ´

1

2
pr ˝ h ` h ˝ rq, hy

ȷ

dvg

´

ż

M

xr, ξ ´ 2h ˝ hy dvg.(2.8)

Proof. From Lemma 2.2, by integration by parts and the divergence theorem

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

|δh|2 ´
1

2
|Dh|2 `

1

2
xdptrghq, δhy

ȷ

dvg

`

ż

M

xR̊phq ´
1

2
pr ˝ h ` h ˝ rq, hydvg

`
1

2

ż

M

”

|∇ptrghq|2 ` xδh, dptrghqy ´
s

n
ptrghq2

ı

dvg

´

ż

M

xr, ξ `
1

2
ptrghqh ´ 2h ˝ hydvg.

Our lemma follows from δh “ 0 and trgh “ 0. □

Remark 2.5. Note that for a symmetric 2-tensor h, we have

xr ˝ h, hy “ xr, h ˝ hy “ xh ˝ r, hy.

Thus, (2.8) becomes

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

´
1

2
|Dh|2 ` xR̊phq, hy ` xr, h ˝ hy ´ xr, ξy

ȷ

dvg.

Moreover, since r “ z ` s
ng, where z is the traceless Ricci tensor,

xr, h ˝ hy “ xz, h ˝ hy `
s

n
|h|2 and xr, ξy “ xz, ξy `

s

n
trg ξ.

Recalling (2.4), we obtain

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

´
1

2
|Dh|2 ` xR̊phq, hy ` xz, h ˝ hy

ȷ

dvg

´

ż

M

”

xz, ξy ´
s

2n
ptrghq2

ı

dvg.(2.9)
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Finally, if h is a TT-tensor, we obtain
ż

M

trg ξ dvg “

ż

M

|h|2 dvg,(2.10)

and

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

´
1

2
|Dh|2 ` xR̊phq, hy ` xz, h ˝ hy ´ xz, ξy

ȷ

dvg.(2.11)

3. Main results

As mentioned in the Introduction, if pMn, gq, n ě 2, has positive constant
sectional curvature, then the second variation is strictly negative in a TT di-
rection (or transverse-traceless variations). Using (2.11), we have the following
converse of this result.

Theorem 3.1. Let pMn, gq be an n-dimensional compact Riemannian mani-

fold with constant scalar curvature. If d2

dt2

ˇ

ˇ

t“0
Spgtq ă 0 for any TT variation

gt given by

gt “ g ` th `
t2

2
ξ

for an arbitary symmetric 2-tensor ξ, then pM, gq is Einstein.

Proof. Suppose that pM, gq is not Einstein so that
ş

M
|z|2dvg ą 0. Since M

is compact, for given TT-tensor h there exists a positive constant C ą 0 such
that

ż

M

„

1

2
|Dh|2 `

ˇ

ˇ

ˇ
xR̊phq, hy

ˇ

ˇ

ˇ

ȷ

dvg ď C

ż

M

|z|2dvg.

With this constant, let ξ “ ´Cz`h˝h. Note that ξ satisfies (2.10). By (2.11),

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

´
1

2
|Dh|2 ` xR̊phq, hy

ȷ

dvg ` C

ż

M

|z|2dvg ě 0,

which is a contradiction. □

Now we consider the critical point equation (CPE) on a compact smooth
n-manifold M satisfying

p1 ` fqz “ Ddf `
sf

npn ´ 1q
g.

It turns out that the CPE is the Euler-Lagrange equation of the total scalar
curvature functional S restricted to the set C of constant scalar curvature met-
rics in M1. Recall that a critical point of S on M1 is Einstein. The Besse
conjecture says that a critical point of S restricted to C is Einstein (see [2] and
[11]). It is clear from the definition that a non-trivial solution pg, fq of the CPE
has constant scalar curvature. As a consequence of Theorem 3.1, we have the
following.
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Corollary 3.2. Let pg, fq be a non-trivial solution of the CPE on a compact

manifold M . If d2

dt2

ˇ

ˇ

t“0
Spgtq ă 0 for any TT variation gt given by

gt “ g ` th `
t2

2
ξ

for an arbitrary symmetric 2-tensor ξ, then pM, gq is isometric to a standard
sphere Sn.

Proof. By Theorem 3.1, pM, gq is Einstein. It follows from Obata’s theorem [7]
that pM, gq is isometric to a standard sphere Sn. □

Now we consider the Lichnerowicz Laplacian defined on symmetric 2-tensors
introduced in [5].

Definition 3.3. The Lichnerowicz Laplacian ∆L acting on the space of sym-
metric 2-tensors is defined by

∆Lh “ D˚Dh ` r ˝ h ` h ˝ r ´ 2R̊phq.

It is worth mentioning [4] that the Hessian of the total scalar curvature for
TT -tensors has the form

HessSgph, hq “ ´
1

2
x∆Lh ´

2

n
sh, hy.

It is also known [8] that for a standard sphere Sn with round metric, the
smallest eigenvalue of the Lichnerowicz Laplacian on TT -tensors is 4n. For a
general p0, 2q-tensor not necessarily TT -tensor, some results on the eigenvalue
estimation for the Lichenerowicz Lapalcain are also known [9].

Rewritting the formula in Lemma 2.2 using the Lichnerowicz Laplacian, we
have

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

x´
1

2
x∆Lh, hy ` |δh|2 `

1

2
xdptrghq, δhy

ȷ

dvg

`
1

2

ż

M

”

|dptrghq|2 ` xδh, dptrghqy ´
s

n
ptrghq2

ı

dvg

´

ż

M

xr, ξ `
1

2
ptrghqh ´ 2h ˝ hydvg.

Lemma 3.4. Let gt be a TT variation of the metric g having constant scalar
curvature. Then

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

´
1

2
x∆Lh, hy ` 2xr, h ˝ hy ´ xr, ξy

ȷ

dvg.

Let us denote by T the space of all transverse traceless symmetric 2-tensors
on pM, gq. Note that if pM, gq has constant scalar curvature, then the traceless
Ricci tensor z “ r ´ s

ng is always contained in T. Thus, T is not trivial unless
pM, gq is Einstein.
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Theorem 3.5. Let pM, gq be a compact Riemannian manifold of constant
scalar curvature. Assume that the smallest eigenvalue λ of the Lichnerowicz

Laplacian is positive. If d2

dt2

ˇ

ˇ

t“0
Spgtq ă 0 for any TT variation gt given by

gt “ g ` th `
t2

2
ξ

for an arbitrary symmetric 2-tensor ξ, then pM, gq is Einstein.

Proof. Let ∆Lh “ λh for a TT -tensor h so that

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

´
1

2
λ|h|2 ` 2xr, h ˝ hy ´ xr, ξy

ȷ

dvg(3.1)

by Lemma 3.4. Suppose that pM, gq is not Einstein so that
ş

M
|r|2dvg ě

ş

M
|z|2dvg ą 0. Let maxM |r| ď k. Since M is compact, for the eigen-tensor h,

there exists a positive constant C ą 0 such that
ż

M

„

1

2
λ|h|2 ` |xr, h ˝ hy|

ȷ

dvg ď pλ ` kq

ż

M

|h|2dvg ď C

ż

M

|z|2dvg.

With this constant, let ξ “ ´Cz`h˝h so that
ş

M
trgξdvg “

ş

M
|h|2dvg. Then,

from (3.1) we have

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Spgtq “

ż

M

„

´
1

2
λ|h|2 ` xr, h ˝ hy ` C|z|2

ȷ

dvg ě 0,

which is a contradiction. □

As a result, for a CPE metric we derive the following result in a similar way.

Corollary 3.6. Let pg, fq be a nontrivial solution to the CPE. Assume that the

smallest eigenvalue λ of the Lichnerowicz Laplacian is positive. If d2

dt2

ˇ

ˇ

t“0
Spgtq

ă 0 for any TT variation gt given by

gt “ g ` th `
t2

2
ξ

for an arbitrary symmetric 2-tensor ξ, then pM, gq is isometric to a standard
sphere Sn.
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H. Poincaré Sect. A (N.S.) 33 (1980), no. 2, 121–146.
[4] N. Koiso, On the second derivative of the total scalar curvature, Osaka Math. J. 16

(1979), no. 2, 413–421. http://projecteuclid.org/euclid.ojm/1200772084

[5] A. Lichnerowicz, Propagateurs et commutateurs en relativité générale, Inst. Hautes
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