• Title/Summary/Keyword: Transputer array

Search Result 3, Processing Time 0.019 seconds

Transputer-based Pyramidal Parallel Array Computer(TPPAC) architecture (Prelimineary Version) (트랜스퓨터를 사용한 피라미드형 병렬 어레이 컴퓨터 (TPPAC) 구조)

  • Jeong, Chang-Sung;Jeong, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.647-650
    • /
    • 1988
  • This paper proposes and sketches out a new parallel architecture of transputer-based pyramidal parallel array computer (TPPAC) used to process computationally intensive problems for geometric processing applications such as computer vision, image processing etc. It explores how efficiently the pyramid computer architecture is designed using transputer chips, and poses a new interconnection scheme for TPPAC without using additional transputers.

  • PDF

Design and Evaluation of a parallel EMG Signal Identifier using Trsnsputers (트랜스퓨터를 이용한 병렬 근신호 인식기의 설계 및 평가)

  • 김종원;김성환
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.459-468
    • /
    • 1996
  • This paper considers the problem of realising a parallel EMG identifier used in FES (functional electrical stimulation) system on a fixed dimension transputer array. This involves using an identifiestion algorithm in the wavelet transform domain. This algorithm have suggested by the authors in a previous paper(6). The transputer serial links permit higtlly varied and economic network-type connections and the structure enables rapid topological reconfiguration. Analysing the results Showed that the Speed-UPS ranged from 1.82 to 3.44 With 2-4 transputers for corresponding model order, and from 1.82 to 3.97 with increasing the model orders when two and four transputers are used respectively.

  • PDF

Systolic Design with Asynchronous Controls for Digital-Signal Processings (디지털 신호처리를 위한 비동기 제어 시스톨릭 설계)

  • 전문석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.410-424
    • /
    • 1993
  • In this paper, we present new techniques for designing systolic arrya and asynchronous arrays for digital-signal processings. More specifically, we propose a systolic array with simple local interconnections which achieves optimal performance without having undesirable features such as preloading input data or global broadcasting. As asynchronous array for digital-signal processings, which can speed up the total computation time significantly is also which can speed up the total computation time significantly is also presented. The key component of the asynchronous array is a presented. The key component of the asynchronous array is a comunicaiton protocol which controls input data flow properly and efficiently. Finally, performance of the arrays is analyzed and a simulation using Occam programmed in a Transputer network is reported.

  • PDF