Journal of Korean Institute of Industrial Engineers
/
v.42
no.4
/
pp.296-303
/
2016
In public transportation, smart cards have been introduced for the purpose of convenient payment systems. The smart card transaction data can be utilized not only for the exact and convenient payment but also for civil planning based on travel tracking of citizens. This paper focuses on the analysis of the transportation convenience using the smart card big data. To this end, a new index is developed to measure the transit convenience of each region by considering how passengers actually experience the transportation network in their travels. The movement data such as movement distance, time and amount between regions are utilized to access the public transportation convenience of each region. A smart card data of five working days in March is used to evaluate the transit convenience of each region in Seoul city. The contribution of this study is that a new transit convenience measure was developed based on the reality data. It is expected that this measure can be used as a means of quantitative analysis in civil planning such as a traffic policy or local policy.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.2
/
pp.58-71
/
2021
The number of elderly people worldwide is rapidly increasing and the mobility handicapped suffering from inconvenient public transportation service is also increasing. In Korea and abroad, various policies are being implemented to provide high-quality transportation services for the mobility handicapped, and budget support and investment related to mobility facilities are being expanded. The mobility handicapped spends more time for transit transfer than normal users and their satisfaction with transit service is also lower. There exist transfer inconvenience points of the mobility handicapped due to various factors such as long transfer distances, absence of transportation facilities like elevators, escalators, etc. The purpose of this study is to find transfer inconvenience points for convenient transit transfer of the mobility handicapped using Smart card Big data. This study process traffic card transaction data and construct transfer travel data by user groups using smart card big data and analysis of the transfer characteristics for each user group ; normal, children, elderly, etc. Finally, find transfer inconveniences points by comparing transfer patterns between normal users and the mobility handicapped. This study is significant in that it can find transfer inconvenience points for convenient transit transfer of the mobility handicapped using Smart card Big data. In addition, it can be applicated of Smart card Big data for developing public transportation polices in the future. It is expected that the result of this study be used to improve the accessibility of transit transportation for mobility handicapped.
KSCE Journal of Civil and Environmental Engineering Research
/
v.38
no.5
/
pp.693-701
/
2018
Transfer types at the Seoul Metropolitan Urban Railway Stations can be classified into transfer between lines and station transfer. Station transfer is defined as occurring when either 1) the operating line that operates the tag-in card-reader and that operating the first train boarded by the passenger are different; or 2) the line operating the final alighted train and that operating the tag-out card-reader are different. In existing research, transportation card data is used to estimate transfer volume between lines, but excludes station transfer volume which leads to underestimation of volume through transfer passages. This research applies transportation card data to a method for station transfer volume estimation. To achieve this, the passenger path choice model is made appropriate for station transfer estimation using a modified big-node based network construction and data structure method. Case study analysis is performed using about 8 million daily data inputs from the metropolitan urban railway.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.15
no.4
/
pp.33-43
/
2016
Public transportation card data, which is collected for purposes of the Integrated Public Transportation Fare System, provides neither transfer time nor transfer frequency occurring on the metropolitan city-rail (MCR). And because there are no transfer toll gates installed on the MCR, data on transfers between lines are estimated through means such as elicitations using survey questionnaire, or otherwise through macroscopic observations, which poses the risk of transfer time and frequencies being underestimated. For the accurate estimation thereof, an explanation of the transit path that arises between the Entry-and Exit-Gates must be provided. The purpose of this research is twofold : 1) to build a transit path model to reflect the current state of transfer movements on the basis of transportation card reader data, and 2) to deduce information on transfers occurring in the greater metropolis. To achieve these aims, the idea of Big Nodes is introduced in the model to align transportation card reader operation system characteristics with those of the MCR network. The link-label method is applied in the model as well to make certain that the MCR network runs in an effective manner. Administrative information obtained by the transportation card reader is used to derive transfer time and frequency both in the city's mid-zones, and in the Seoul-Gyeonggi-Incheon district's large-zones. Public transportation card data from a single specific day in year 2014 is employed in the building of the quantified transfer specific data. Extended usage thereof as providing comprehensive data of transfer resistance on the MCR is also examined.
The Journal of Economics, Marketing and Management
/
v.9
no.5
/
pp.39-50
/
2021
Purpose: This study is to analyze the changes of consumption patterns to diagnose the economic impacts on consumers' market during COVID-19, and to suggest implications to overcome the new social and economic crisis of Jeju Island. Research design, data, and methodology: We collected a set of credit card transaction records issued by BC Card Company from merchants in Jeju Special Self-Governing Province for past 4 years from 2017 to 2020 from the Jeju Data Hub run by Jeju Special Self-Governing Province. The big data contains details of approved credit card transactions including the approval numbers, amount, locations and types of merchants, time and age of users, etc. The researchers summed up amount in monthly basis, transforming big data to small data to analyze the changes of consumption before and after COVID-19. Results: Sales fell sharply in transportation industries including airlines, and overall consumption by age group decreased while the decrease in consumption among the seniors was relatively small. The sales of Yeon-dong and Yongdam-dong in Jeju City also fell significantly compared to other regions. As a result of the paired t-test of all 73 samples in Jeju City, the p-value of the mean consumption of the credit card in 2019 and 2020 is significant, statistically proven that the total consumption amount in the two years is different. Conclusions: We found there are sensitive spots that can be strategically approached based on the changes in consumption patterns by industry, region, and age although most of companies and small businesses have been hit by COVID-19. It is necessary for local companies and for the government to be focusing their support on upgrading services, in order to prevent declining sales and job instability for their employees, creating strategies to retain jobs and prevent customer churn in the face of the crisis. As Jeju Province is highly dependent on the tertiary industry, including tourism, it is suggested to create various strategies to overcome the crisis of the pandemic by constantly monitoring the sales trends of local companies.
KSCE Journal of Civil and Environmental Engineering Research
/
v.36
no.1
/
pp.105-114
/
2016
With approximately 20 million transportation card data entries of the metropolitan districts being generated per day, application of the data to management and policy interventions is becoming an issue of interest. The research herein attempts a model of the possibility of dynamic demand change predictions and its purpose is thereby to construct a Dynamic Passengers Trip Assignment Model. The model and algorithm created are targeted at city rail lines operated by seven different transport facilities with the exclusion of travel by bus, as passenger movements by this mode can be minutely disaggregated through card tagging. The model created has been constructed in continuous time as is fitting to the big data characteristic of transport card data, while passenger path choice behavior is effectively represented using a perception parameter as a function of increasing number of transfers. Running the model on 800 pairs of metropolitan city rail data has proven its capability in determining dynamic demand at any moment in time, in line with the typical advantages expected of a continuous time-based model. Comparison against data measured by the eye of existing rail operating facilities to assess changes in congestion intensity shows that the model closely approximates the values and trends of the existing data with high levels of confidence. Future research efforts should be directed toward continued examination into construction of an integrated bus-city rail system model.
Journal of the Korean Regional Science Association
/
v.33
no.3
/
pp.101-113
/
2017
This study examines the mobility of the disadvantaged population groups in terms of public transportation using the 2014 smart card data in Seoul, Korea. Particularly, we focus on the disadvantaged population such as senior group, junior group, and low-income population group. Based on the spatial distributions of public transportation mobility levels and the disadvantaged population groups, we identify specific areas where public transportation service should be improved for the disadvantaged population. As a result, we identify 15 administrative-dongs where the ratio of the disadvantaged population is high while the mobility index of public transit is low. The main contributions of this study are as follows. First, we use the smart card data which contains the information of actual trip made by individuals and develop the evaluation process of urban mobility for the disadvantaged population groups. Second, we identify the specific areas where public transportation service should be improved for the different group of the disadvantaged population. Lastly, we discuss policy implications to improve the urban mobility of the disadvantaged population.
Journal of the Korean Data and Information Science Society
/
v.26
no.5
/
pp.1061-1069
/
2015
Recently, transportation big data generated in the transportation sector has been widely used in the transportation policies making and efficient system management. Bus passengers' mobility patterns are useful insight for transportation policy maker to optimize bus lines and time intervals in a city. We propose a new methodology to discover mobility patterns by using transportation card data. We first estimate the bus stations where the passengers get-off because the transportation card data don't have the get-off information in most cities. We then applies LDA (Latent Dirichlet Allocation), the most representative topic modeling technique, to discover mobility patterns of bus passengers in Cheong-Ju city. To understand discovered patterns, we construct a data warehouse and perform multi-dimensional analysis by bus-route, region, time-period, and the mobility patterns (get-on/get-off station). In the case of Cheong Ju, we discovered mobility pattern 1 from suburban area to Cheong-Ju terminal, mobility pattern 2 from residential area to commercial area, mobility pattern 3 from school areas to commercial area.
KSCE Journal of Civil and Environmental Engineering Research
/
v.36
no.6
/
pp.1083-1091
/
2016
This research uses public transportation card data to analyze the inter-regional transfer times, transfer frequencies, and transfer resistance that passengers experience during transit amongst the metropolitan public transportation modes. Currently, mode transfers between bus and rail are recorded up to five times during one transit movement by Trip Chain, facilitating greater comprehension of intermodal movements. However, lack of information on what arises during these transfers poses a problem in that it leads to an underestimation of transfer resistances on the Trip Chain. As such, a path choice model that reflects passenger movements during transit activities is created, which attains explanatory power on transfer resistance through its inclusion of transfer times and frequencies. The methodology adopted in this research is to first conceptualize the idea of metropolitan public transportation transfer, and in the case that mode transfers include the city-rail, to newly conceptualize the idea of transfer resistance using transportation card data. Also, the city-rail path choice model within the Trip Chain is constructed, with transfer time and frequency used to reevaluate transfer resistance. Further, in order to align bus and city-rail station administrative level small-zone coordinates to state and regional level mid-zone coordinates, the big node methdod is utilized. Finally, case studies on trip chains using at least one transfer onto the city-rail is used to determine the validity of the results obtained.
Kim, Woosaeng;Kim, Yong Hoon;Park, Hee-Sung;Park, Jin-Kyu
Journal of Information Technology Applications and Management
/
v.24
no.4
/
pp.187-196
/
2017
It is urgent to prepare countermeasures for traffic congestion problems of Korea's metropolitan area where central functions such as economic, social, cultural, and education are excessively concentrated. Most users of public transportation in metropolitan areas including Seoul use the traffic cards. If various information is extracted from traffic big data produced by the traffic cards, they can provide basic data for transport policies, land usages, or facility plans. Therefore, in this study, we extract valuable information such as the subway passengers' frequent travel patterns from the big traffic data provided by the Seoul Metropolitan Government Big Data Campus. For this, we use a Hadoop (High-Availability Distributed Object-Oriented Platform) to preprocess the big data and store it into a Mongo database in order to analyze it by a sequential pattern data mining technique. Since we analysis the actual big data, that is, the traffic cards' data provided by the Seoul Metropolitan Government Big Data Campus, the analyzed results can be used as an important referenced data when the Seoul government makes a plan about the metropolitan traffic policies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.