• 제목/요약/키워드: Transport velocity

검색결과 697건 처리시간 0.024초

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki;Kim, Eui-Kwang;Wi, Myung-Hwan;Kim, Seong-O
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1782-1798
    • /
    • 2004
  • A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

급지 장치에서의 미끄러짐 현상에 대한 연구 (A Study on Slipping Phenomenon in a Media Transport System)

  • 유재관;이순걸;임성수;김시은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.681-685
    • /
    • 2004
  • A media-feeding (or media-transport) system is a key component in daily consumer systems such as printers, copiers and ATM's. The role of the media-transport system is to feed a medium, which is usually in the form of a thin film, to the main process in a uniform and repeatable manner. Even small slippage between the media and the feeding rollers could significantly degrade the performance of the entire system. The slippage between the medium and the feeding rollers is determined by many parameters which include the friction coefficient between the feeding rollers and the medium material, the angular velocity of the feeding rollers, and the normal force applied by feeding rollers on the medium. This paper investigates the effect of the normal force and the angular velocity of feeding rollers on the slippage of the medium. Authors have constructed a test bed for experiments, which consists of a feeding module and various measuring devices. Using regular paper as media being fed, the authors experimentally measured the slippage of the medium under various normal forces and angular velocities of driving feeding roller. Also the authors developed a novel two-dimensional simulation model for the media-transport system. The paper medium is modeled as a set of multiple rigid bodies interconnected by revolute joints and rotational springs and dampers. Simulations were executed using a multi-body dynamic analysis tool called RecurDy $n^{ⓡ}$. The slippage obtained by the simulation is compared to experimental results.ults.

  • PDF

고체고분자형 연료전지 내의 이동현상에 대한 수치해석 (NUMERICAL ANALYSIS OF TRANSPORT PHENOMENA IN POLYMER ELECTROLYTE FUEL CELLS)

  • 박찬국
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.9-15
    • /
    • 2007
  • A three dimensional numerical model to predict the flow and transport of mixtures and also the electrochemical reactions in polymer electrolyte membrane (PEM) fuel cells is developed. The numerical computation is base on vorticity- velocity method. Governing equations for the flow and transport of mixtures are coupled with the equations for electrochemical reactions and are solved simultaneously including production and condensation of vapor. Fuel cell performance predicted by this calculation is compared with the experimental results and resonable agreements are achieved.

연소재의 기력수송 특성 연구 (A Study on Pneumatic Transport of Abrasive)

  • 백재진;윤원준;이채석;정몽규;신상룡;권혁준;이병헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1442-1447
    • /
    • 2004
  • A significant amount of labor hour is being spent for clean up spent abrasives after blasting. So, for improving the efficiency of abrasive(grit) recovery process which acts as the neck of a battle in preceding coating stage, it was established the theoretical background for pneumatic transport technology in the abrasive recovery system as well as experimentally evaluated the effect of design parameters such as flow pattern, saltation velocity and pressure drop on the efficiency of the abrasive recovery system. And, by optimizing the operating parameter such as the length and diameter of suction hose, specification of recovery device, recovery mouth and hose connection method, a method which can dramatical1y increase the efficiency of abrasive recovery system, is derived.

  • PDF

유기발광 소자의 수송층 두께 변화에 따른 수치적 해석 (Numerical Analysis of OLED Luminescence Efficiency by Hole Transport Layer Change)

  • 이정호
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1341-1346
    • /
    • 2004
  • The OLED research is gone for two directions. One is material development research, and another one is structural improvement part. All two are thing to heighten luminescence efficiency of OLED. n other to improve luminescence efficiency of OLED Electron - hole pairs must consist much more in the device Their profiles are sensitive to mobility velocity of electrons and holes. In this paper, we demonstrate the difference of velocity between hole and electron by experiments, and compare with a data of simulation and experiment changing hole carrier transport layer thickness, so we get the optimal we improve luminescence efficiency. We suggest improving the efficiency of OLEDS would be to balance the injection of electrons and holes into light emission layer of the device. And, we improve understanding of the various luminescence efficiency through experiments and numerical analysis of luminescence efficiency in variable hole carrier transport layer's thickness.

유기발광 소자의 수송층 두께 변화에 따른 발광효율 연구 (Study of OLED luminescence efficiency by Hole Transport layer change)

  • 이정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1002-1006
    • /
    • 2004
  • The studies on OLED(Organic Light-Emitting Diode) materials and structures have been researched in other to improve luminescence efficiency of OLED. Electrons and holes are injected into the devices, transported across the layer and recombine to form excitons, their profiles are sensitive to mobility velocity of electrons and holes. A suggested means of improving the efficiency of LEDs would be to balance the injection of electrons and holes into light emission layer of the device. In this paper, we demonstrate the difference of velocity between hole and electron by experiments, and compare with a data of simulation and experiment changing hole carrier transport layer thickness, so we get the optimal we improve luminescence efficiency. We improve understanding of the various luminescence efficiency through experiments and numerical analysis of luminescence efficiency in the hole carrier transport layer's thicknes.

  • PDF

2항근사 볼츠만 방정식을 이용한 Xe분자가스의 전자수송계수의 해석 (The study of electron transport coefficients in pure Xe by 2-term approximation of the Boltzmann equation)

  • 마수영;전병훈;김송강
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.174-177
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure Xe were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of Xe molecular gas.

  • PDF

2항근사 볼츠만 방정식을 이용한 Ne분자가스의 전자수송계수의 해석 (The study of electron transport coefficients in pure Ne by 2-term approximation of the Boltzmann equation)

  • 전병훈;강명희;김송강
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.182-185
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure Ne were calculated over the wide E/N range from 0.01 to 300 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of Ne molecular gas.

  • PDF

PEM 연료전지의 단순화된 공기극 채널 내 단일 물방울의 성장 및 이동 특성에 대한 실험적 연구 (Experimental investigation of growth and transport behavior of single water droplet in a simplified channel of PEM fuel cell)

  • 김보경;김한상;민경덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.81-84
    • /
    • 2006
  • To investigate the characteristics of water droplet on the gas diffusion layer from both upper-view and side-view of flow channel, a rig test apparatus was designed and fabricated with L-shape acryl plate in a $1mm{\times}1mm$ micro-channel. This experimental device is used to simulate the single droplet growth and its transport process under fuel cell operating condition. As a first step, we investigated the growth and transport of single water droplet with working temperature and air flow velocity. The contact angle and its hysteresis of water droplet at departing moment are measured and analyzed. It is expected that this study can provide the basic understanding of liquid water droplet behavior in gas flow channel and GDL interface during the PEM fuel cell operation.

  • PDF

Planar-Jet형 연소내 층류유동의 전산해석 (Numerical Study of Laminar Flow in a Combustor with a Planar Fuel Jet)

  • 엄준석;김도형;양경수;신동신
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1644-1651
    • /
    • 2000
  • In this study, the confined laminar flow and transport around a square cylinder with a planar fuel jet are numerically simulated. Both rear and front jets are considered, respectively. In each case, various ratios of the jet velocity to the fixed upstream velocity are taken into consideration. In case of the rear jet, the high mass-fraction region is formed along the streamlines from the jet exit, and the oscillation of the force on the square cylinder eventually disappears as the jet velocity is close to the upstream velocity. In case of the front jet, drag is significantly reduced when the jet velocity ratio is grater than 1. The results obtained exhibit flow and scalar-mixing charactered in a planar combustor.