• 제목/요약/키워드: Transport refrigeration

검색결과 104건 처리시간 0.022초

지역냉방 적용을 위한 LNG냉열 장거리 수송용 제 2종 흡수식 시스템 (Type 2 Absorption Cycle to Transport Energy in the Long Distance for District Cooling Application)

  • 조영경;김진경;오민규;강용태
    • 설비공학논문집
    • /
    • 제17권3호
    • /
    • pp.250-255
    • /
    • 2005
  • The objective of this paper is to develop a new energy transport system for district cooling application by using type 2 absorption cycle. Cold energy from the LNG storage system is utilized as the cooling source of the condenser and the rectifier. The pressures of the system, UAs of the evaporator and the desorber, and the inlet temperatures of the refrigerant to each component are considered as the key parameters. The results show that UA of the evaporator is more dominant parameter on COP than that of the desorber and the optimum system pressure for the demand side is estimated as 525 kPa. For the present system, it is recommended that the refrigerant inlet temperature of the evaporator be lower than $4.3^{\circ}C$ for long-distance transportation. It is concluded that the cold energy from the LNG storage system can be effectively applied to the long-distance transportation system for district cooling application with the type 2 absorption cycle. The optimum operation conditions are also predicted from the parametric analysis.

수송조건 내 포집 이산화탄소의 전달물성 예측. 1.점성 (Prediction of Transport Properties for Transportation of Captured CO2. 1. Viscosity)

  • 이원준;윤린
    • 설비공학논문집
    • /
    • 제29권4호
    • /
    • pp.195-201
    • /
    • 2017
  • In this study, the viscosity of a $CO_2-gas$ mixture was investigated for the transportation of the captured $CO_2-gas$ in pipelines and for the designing of a thermal system, both of which involve the utilization of the $CO_2-gas$ mixture. The viscosities of the $CO_2-gas$ mixture, $CO_2+CH_4$, $CO_2+H_2S$, and $CO_2+N_2$ were predicted using three different models as follows : Chung, TRAPP, and REFPROP. The predictability values of the models were validated by comparing the estimated results with the experiment data for the $CO_2+CH_4$ and $CO_2+N_2$ under high-density conditions. The Chung model showed 2.41%, which is the lowest mean deviation of the prediction among the model. Based on the Chung model, the mixture mole fractions were changed from 0.9, 0.95, and 0.97, the mixture pressure was ranged from 80 bar to 120 bar by 10 bar, and the mixture temperature was varied from 310 K to 400 K by 10 K to observe the effects of the parameters on the mixture viscosity. Considering the high mole fraction of the $CO_2$ in the mixture, a significant variation of the mixture viscosity was observed close to the pseudo-critical temperature, and the viscosity for the $CO_2+H_2S$ mixture shows the highest values compared with those of the $CO_2+CH_4$ and $CO_2+N_2$.

불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향 (Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe)

  • 서정세;박영식;정경택
    • 설비공학논문집
    • /
    • 제18권4호
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권2호
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

Study on the Capillary Limitation in Copper-Water Heat Pipes with Screen Wicks

  • Park, Ki-Ho;Lee, Ki-Woo;Noh, Seung-Yong;Rhi, Seok-Ho;Yoo, Seong-Yeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권1호
    • /
    • pp.21-29
    • /
    • 2004
  • This paper is to study the heat transfer performance of the copper-water heat pipe with screen wicks. Recently, the semiconductor capacity of an electronic unit becomes larger, but its size becomes much smaller. As a result, a high- performance cooling system is needed. Experimental variables are inclination angles, temperatures of cooling waters and the mesh number of screen wicks. The distilled water was used as a working fluid. Based on the experimental results, when the copper-water heat pipe of 6mm diameter is used at the top heat mode, the heat transfer performance of 100 mesh 2 layers heat pipe is better than that of 150 and 200 mesh. The thermal resistance of the two layers with the 100-mesh screen was 0.7-$0.8^{\circ}C$/W.

자동차 냉/난방 성능 향상을 위한 공기조화 덕트의 기류해석 (Aerodynamic Analysis of Automotive HVAC Duct for Enhancement of Cooling/Heating Performance)

  • 주재우;이기돈;허만웅;김광용;박준규;윤정환;김홍빈
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.23-28
    • /
    • 2012
  • In the present work, numerical analyses of air flow in HVAC duct have been carried out for enhancement of cooling/heating performance. For the analyses, three-dimensional Reynolds-averaged Navier-Stokes equations have been solved with the shear stress transport turbulence model. The numerical results were validated in comparison with the experimental data. Based on the numerical results, the HVAC duct was designed to reduce the pressure loss. The modified duct geometry shows largely reduced pressure drop in comparison with the reference geometry. And, through modified duct shape, the performance of air conditioning has been enhanced.

계면활성제를 첨가한 마찰감소 채널흐름의 유동특성 (Flow Characteristics of Drag Reducing Channel Flows Induced by Surfactant)

  • 박성룡;윤형기
    • 설비공학논문집
    • /
    • 제8권4호
    • /
    • pp.519-526
    • /
    • 1996
  • A 2D-LDV system was employed to investigate the flow field characteristics in fully developed drag reducing turbulent channel flows. The additive used in this study was Habon-G which showed splendid drag reduction effect and minimum mechanical degradation trend in the closed flow circulation loop. In order to have better understanding of the drag reduction mechanism, the instantaneous velocities were carefully measured under various experimental conditions and the flow characteristics including time-averaged velocity, turbulent intensity and Reynolds shear stresses were carefully assessed. The time-averaged velocity profiles of surfactant flows showed more parabolic shape(typically shown in a laminar flow) together with significant suppression of turbulent production, yielding the shear induced micelle structure orienting in the flow direction due to its isotropic characteristics. Especially it was observed that the maximum intensity for drag reducing flows was shifted away from the wall and that the streamwise and normal turbulent intensities were strongly altered. This phenomenon strongly suggests that the viscous sublayer becomes thicker with addition of surfactant. Turbulent momentum transport was drastically suppressed across the whole drag reducing channel flow.

  • PDF

기존 설계기준 아파트와 친환경 저에너지 아파트의 $LCCO_2$ 비교 ($LCCO_2$ Comparison of Existing Apartment Housing and Environment-Friendly Apartment Housing)

  • 김유민;손장열
    • 설비공학논문집
    • /
    • 제22권4호
    • /
    • pp.234-240
    • /
    • 2010
  • In October 2009, the Ministry of Land Transport and Maritime Affairs noticed 'Environment-friendly housing construction standards and performance' to build energy saving environment-friendly housings (Green Homes) for the reduction of energy consumption and carbon dioxide emission. In this study, the $CO_2$ emissions were evaluated during the life cycle of the existing apartments which were built in 1980's and Green Home apartment. $LCCO_2$ was evaluated by dividing the life cycle into three stages which are construction, maintenance and destruction stage. $CO_2$ emission from the materials for improving insulation performance was estimated by Input-output analysis. As a result, in 40 year-life cycle of $84\;m^2$ apartment, 400.68 T-$CO_2$ was emitted from 1980's apartment, on the other hand 231.02 T-$CO_2$ was emitted from Green Home apartment.

다채널 알루미늄 평판관내 R22와 R134a의 흐름 응축 열전달 성능 비교 (A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube)

  • 서영호;박기정;정동수
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.589-598
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22 and R134a were measured on a horizontal 9 hole aluminum multi-channel tube. The main test section in the refrigerant loop was made of a flat multi-channel aluminum tube of 1.4 mm hydraulic diameter and 0.53 m length. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in the vapor qualities of 0.1∼0.9 at mass flux of 200∼400 kg/$m^2$s and heat flux of 7.3∼7.7 ㎾/$m^2$ at the saturation temperature of 4$0^{\circ}C$. All popular correlations in single-phase subcooled liquid and flow condensation originally developed for large single tubes predicted the present data of the flat tube within 20% deviation when effective heat transfer area is used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Thermal insulation for the outer tube section surrounding the test tube for the transport of heat transfer fluid is very important in fluid heat-ing or cooling type heat transfer experimental apparatus.

Bioviolence Agents에 따른 건물내 미생물오염원의 효율적인 제거방안에 관한 연구 (A Study on the Effective Removal Method of Microbial Contaminants in Building According to Bioviolence Agents)

  • 이현우;홍진관
    • 설비공학논문집
    • /
    • 제22권12호
    • /
    • pp.881-890
    • /
    • 2010
  • As Influenza A virus(H1N1) has been spreading more rapidly around globe, the study on the airborne disease which is transimitted through the respiratory system is on the rise. In this study, the multizone simulation of the public building against bioviolence is performed in the case of unexpected spread of microbial contaminants, such as bioviolence agent, Influenza A, Smallpox, B. anthrax and transport and control characteristics of above three kinds of bioviolence agents are evaluted. Results suggest that Influenza A and Smallpox which has small mean diameter can be more removable than B. anthrax by using high UVGI grade condition and B. anthrax which has large mean diameter can be more removable than Influenza A and Smallpox by using high filter grade condition. Results also suggest that installing a combined air treatment system is more effective to reduce the damage and engineers will use immune building technology for removing the bioviolence agents effectively.