• Title/Summary/Keyword: Transport layer

Search Result 1,244, Processing Time 0.027 seconds

Effect of Air Exposure on ZnO Thin Film for Electron Transport Layer of Quantum Dot Light-Emitting Diode (ZnO 박막 전자수송층의 공기 노출에 의한 양자점 발광다이오드의 특성 변화)

  • Eunyong Seo;Kyungjae Lee;Jeong Ha Hwang;Dong Hyun Kim;Jaehoon Lim;Donggu Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.455-461
    • /
    • 2023
  • We investigated the electrical characteristics of ZnO nanoparticles (NPs) with air exposure that is a widely used electron transport layer for quantum dot light-emitting diodes (QLEDs). Upon air exposure, we observed changes in the density of states (DOS) of the trap levels of ZnO NPs. In particular, with air exposure, the concentration of deep trap energy levels in ZnO NPs decreased and electron mobility significantly improved. Consequently, the air-exposed ZnO reduced leakage current by approximately one order of magnitude and enhanced the external quantum efficiency at the low driving voltage region of the QLED. In addition, based on the excellent conductivity properties, high-brightness QLEDs could be achieved.

Annealing Temperature of Nickel Oxide Hole Transport Layer for p-i-n Inverted Perovskite Solar Cells (P-I-N 역구조 페로브스카이트 태양전지 응용을 위한 Nickel oxide 홀전달층의 열처리 온도 연구)

  • Gisung Kim;Mijoung Kim;Hyojung Kim;JungYup Yang
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.103-107
    • /
    • 2023
  • A Nickel oxide (NiOx) thin films were prepared via sol-gel process on a transparent conductive oxide glass substrate. The NiOx thin films were spin-coated in ambient air and subsequently annealed for 30 minutes at temperatures ranging from 150℃ to 450℃. The structural and optical characteristics of the NiOx thin films annealed at various temperatures were measured using X-ray diffraction, field emission scanning electron microscopy, and ultraviolet-visible spectroscopy. After optimizing the NiOx coating conditions, perovskite solar cells were fabricated with p-i-n inverted structure, and its photovoltaic performance was evaluated. NiOx thin films annealed at 350℃ exhibited the most favorable characteristics as a hole transport layer, resulting in the highest power conversion efficiency of 17.88 % when fabricating inverted perovskite solar cells using this film.

Low-Latency Handover Scheme Using Exponential Smoothing Method in WiBro Networks (와이브로 망에서 지수평활법을 이용한 핸드오버 지연 단축 기법)

  • Pyo, Se-Hwan;Choi, Yong-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.91-99
    • /
    • 2009
  • Development of high-speed Internet services and the increased supply of mobile devices have become the key factor for the acceleration of ubiquitous technology. WiBro system, formed with lP backbone network, is a MBWA technology which provides high-speed multimedia service in a possibly broader coverage than Wireless LAN can offer. Wireless telecommunication environment needs not only mobility support in Layer 2 but also mobility management protocol in Layer 3 and has to minimize handover latency to provide seamless mobile services. In this paper, we propose a fast cross-layer handover scheme based on signal strength prediction in WiBro environment. The signal strength is measured at regular intervals and future value of the strength is predicted by Exponential Smoothing Method. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency is reduced. Simulation results demonstrate that the proposed scheme predicts that future signal level accurately and reduces the total handover latency.

  • PDF

Numerical Simulation of Water Transport in a Gas Diffusion Layer with Microchannels in PEMFC (마이크로채널이 적용된 고분자 전해질 연료전지 가스확산층의 물 이송에 대한 전산해석 연구)

  • Woo, Ahyoung;Cha, Dowon;Kim, Bosung;Kim, Yongchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • The water management is one of the key issues in low operating temperature proton exchange membrane fuel cells (PEMFCs). The gas diffusion layer (GDL) allows the reactant gases flow to the reaction sites of the catalyst layer (CL). At high current density, generated water forms droplets because the normal operating temperature is $60{\sim}80^{\circ}C$. If liquid water is not evacuated properly, the pores in the GDL will be blocked and the performance will be reduced severely. In this study, the microchannel GDL was proposed to solve the flooding problem. The liquid water transport through 3-D constructed conventional GDL and microchannel GDL was analyzed varying air velocity, water velocity, and contact angle. The simulation results showed that the liquid water was evacuated rapidly through the microchannel GDL because of the lower flow resistance. Therefore, the microchannel GDL was efficient to remove liquid water in the GDL and gas channels.

Distribution of Current Structures between Sori Island and Yokji Island in the South Sea of Korea (한국 남해 소리도와 욕지도 사이 해역의 유동 분포)

  • Hwang, Suk-Bum;Choo, Hyo-Sang;Kim, Dae-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.285-291
    • /
    • 2006
  • In order to find the current structure between Sori Island and Yokji Island in the South Sea of Korea, water movements were measured in May, June, October and November of 2004 using ADCP(acoustic doppler current profiler). In the southwestern part of Yokji Island, northeastward flow in whole of depth was dominant by mean current The boundary layer between the upper layer and lower layer was formed between 15m and 20m and each layer different flow. The upper and lower layers have a different direction and speed of currents. In the calculated volume transport, the northeastward transport was greater than southwestward.

  • PDF

Media-aware and Quality-guaranteed Rate Adaptation Algorithm for Scalable Video Streaming (미디어 특성과 네트워크 상태에 적응적인 스케일러블 비디오 스트리밍 기법에 관한 연구)

  • Jung, Young-H.;Kang, Young-Wook;Choe, Yoon-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.517-525
    • /
    • 2009
  • We propose a quality guaranteed scalable video streaming service over the Internet using a new rate adaptation algorithm. Because video data requires much more bandwidth rather than other types of service, therefore, quality of video streaming service should be guaranteed while providing friendliness with other service flows over the Internet. To successfully provide this, we propose a framework for providing quality-guaranteed streaming service using two-channel transport layer and rate adaptation of scalable video stream. In this framework, baseline layer for scalable video is transmitted using TCP transport for minimum qualify service. Enhancement layers are delivered using TFRC transport with layer adaptation algorithm. The proposed framework jointly uses the status of playout buffer in the client and the encoding rate of layers in media contents. Therefore, the proposed algorithm can remarkably guarantee minimum quality of streaming service rather than conventional approaches regardless of network congestion and the encoding rate variation of media content.

A Study on the Characteristics of a Quantum Dots Light-Emitting Diodes Using a Mixed Layer of Quantum Dots and Hole Transport Materials (양자점과 정공 수송 물질의 혼합층을 사용한 양자점 전계발광 소자의 특성 연구)

  • Yoon, Changgi;Oh, Seongkeun;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.69-72
    • /
    • 2021
  • Various studies for QLEDs using inkjet printing has been actively conducted. Multilayers in QLEDs need an orthogonal process inevitably using different solvents and it makes the inkjet printing process more difficult and expensive. Therefore, coating two layers in a single process can reduce the fabrication step, resulting in the process time. In this study, we fabricated QLEDs of standard structure using a mixture of emission layer and hole transport layer. The mixed layer was fabricated by dissolving TFB and QDs in chlorobenzene, and the maximum luminance of the device was 45,850 cd/m2. It shows the bright future of the electroluminescence devices applied with inkjet printing process.

The recent trend of organic electroluminescent devices (유기 전계발광 소자의 최근의 개발동향)

  • 구할본;김주승;조재철
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.208-215
    • /
    • 1996
  • 본 고에서는 최근 주목받고 있는 적층형 유기 전계발광소자의 일반적 형태와 발광특성등에 대해 알아보고자 한다. 현재 완전한 유기 전계발광소자의 개발을 위해 캐리어 수송재 즉, 정공수송재와 전자수송계의 캐리어 수송능력을 증가시키기 위해서 여러가지 새로운 물질들이 연구되고 있으며, 고효율의 발광특성을 얻어내기 위한 발광재료의 개발과 동작시의 안정성을 향상시키기 위한 소자구조의 개선에 대해서도 연구가 국내외적으로 활발히 진행되고 있다. 특히, 조만간 일본에서 30cd/m$^{2}$의 휘도를 갖는 적층형 유기 전계발광 소자가 상용화 될것으로 알려져있어 이를 계기로 고휘도, 고효율의 유기 전계발광 소자의 개발이 가까운 시일내에 이루워지리라 전망된다.

  • PDF

Characteristics of blue organic EL devices as thickness ratio (청색 유기 EL 소자의 두께비에 따른 발광 특성)

  • 손철호;나선웅;여철호;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.648-651
    • /
    • 2001
  • We studied about luminance characteristics of blue organic electroluminecent device as thickness ratio. The device is fabricated TPD(N,N'-dyphenyl-N-N'-bis(3-methyphenyl) -1,1'-biphenyl-4,4'-diamine) as hole transport layer and Butyl -PBD(1,1,4,4-Tetraphenyl-1,3-butadiene) as emission layer and electron transport layer. Total thickness is 1000${\AA}$ as HTL and ETL, each devices has 500${\AA}$:500${\AA}$. 400${\AA}$:600${\AA}$ and 600${\AA}$:400${\AA}$ of TPD : Butyl-PBD. We obtained the maximum brightness about 175cd/㎡ 500${\AA}$: 500${\AA}$ thickness devices as HTL:ETL

  • PDF

Hole transport properties of organic EL devices using a copper(II)-phthalocyanine (Copper(II)-phthalocyanine을 이용한 유기 EL 소자의 정공 전송 특성)

  • 한우미;임은주;이정윤;김명식;이기진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.927-930
    • /
    • 2001
  • We studied the electrical properties of Copper(II)-phthalocyanine (Cu-Pc) as a hole transport layer in organic light emitting devices (OLEDs). OLEDs were constructed with ITO/CU-Pc/triphenyl-diamine (TPD)/tris-(8-hydroxyquinoline) aluminum ( Alq$_3$) + 4- (Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)/Al. It was consisted of a thin DCM in Alq$_3$emission layer. We observed that the change of recombination zone was moved toward the cathode as the hole mobility increased due to the heat-treatment temperature of Cu-Pc layer increased.

  • PDF