• Title/Summary/Keyword: Transport in soil

Search Result 527, Processing Time 0.033 seconds

토양 유기물 분리 처리 방법이 비친수성 오염물질 흡착에 미치는 영향

  • Jeong Sang-Jo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Accurate prediction of the fate and transport of contaminants in soils and sediments is very Important to environmental risk assessment and effective remediation of contaminated soils and sediments. The fate and transport of contaminants in subsurface are affected by geosorbents, especially carbonaceous materials including black carbon. Various physical and chemical treatment methods have been developed to separate different kinds of carbonaceous materials from soils and sediments. However, the effects of these separation methods on the properties of remaining carbonaceous materials including sorption capacity and linearity are unclear. The objective of this study is to determine if the chemical and thermal treatment methods previously used to separate different carbonaceous material fractions affect the properties of carbonaceous materials including longer term sorption capacity of hydrophobic organic contaminants. The results indicate that treatments with hydrochloric acid (HCl)/hydrofluoric acid (HF), trifluoroacetic acid (TFA), sodium hydroxide (NaOH) may not affect the sorption capacity of black carbon reference materials such as char and soot, however, treatments with acid dichromate $(K_2Cr_2O_7/H_2SO_4)$ and heat $(375^{\circ}C)$ for 24 hours in sufficient of oxygen) decrease the sorption capacity of them. The results of longer term sorption isotherm indicate that 2 days might be enough for trichloroethene (TCE) to equilibrate apparently with treated black carbon reference materials. The results suggest that acid dichromate and heat treatments may not appropriate method to investigate sorption properties of black carbon in soils and sediments.

  • PDF

Analysis of Pollutant Transport in Subsurface Materials by Using Radioisotope (동위원소를 이용한 지하매질내 오염물 이동 해석)

  • Kim, Ki Chul;Park, Geon Hyeong;Jung, Sung Hee;Suh, Kyung Suk
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • The pollutants in subsurface soil are advected by groundwater flow and transported by the hydrodynamic dispersion. In this study, laboratory-scale experiments by using a radioisotope were conducted to evaluate the characteristics of the transport and dispersion of pollutants in the soil. The hydraulic model of the laboratory-scale was manufactured based upon its geometric similarity. Tc-99m having a short half-life was used with a tracer and it was injected instantaneously into the soil. Tc-99m milked from a $^{99}Mo/^{99m}Tc$ portable generator fabricated for medical purposes had 0.141 MeV of gamma radiation. The experiments are performed by the different conditions like the variations of groundwater velocity and the results are analyzed by the measured CPS of Tc-99m.

Solute Transport Modeling using Streamline Simulation in a Heterogeneous Aquifer with Multiple Contaminant Sources (불균질 대수층에서 유선 시뮬레이션을 이용한 다수 오염원의 용질 이동 모사)

  • Jung Seung-Pil;Choe Jong-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.24-31
    • /
    • 2005
  • This study presents a contaminant transport model suitable for a 2-dimensional heterogeneous aquifer with multiple contaminant sources. It uses a streamline simulation, which transforms a multi-dimensional problem into multiple 1dimensional problems. It runs flow simulation, streamline tracking, and calculation of contaminant concentrations by turns. The model is verificated with a Visual MODFLOW by comparing contaminant concentration distributions and breakthrough curves at an observation well. Due to its fast simulation, it can be applied to time consuming simulations such as in a fine-grided aquifer, an inverse modeling and other applications.

유선 시뮬레이션 기법과 준해석해를 이용한 용질 거동 분석

  • 정대인;최종근;박광원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.57-62
    • /
    • 2004
  • Streamline simulation researches have been extensively accomplished due to the swiftness of computation and the reduction of numerical dispersion. In this study, we developed a streamline simulation model using a semianalytical solution of ID transport equation. To validate accuracy of the developed model, we compared simulation results of contaminant transport, which were acquired by streamline simulation models using an analytical solution, a numerical solution, and a semianalytical solution. The developed model using the semianalytical solution matched well with the model using an analytical solution. However, streamline simulation model using a numerical solution showed numerical dispersion. For an advection-dominant flow, there was little difference in the simulation results between the developed model and tile analytical model, but the differences between the analytical model and the numerical model were cleary shown. From the comparison of computing time we know that the streamline simulation using the semianalytical solution is 2-60 times as fast as the streamline simulation using the numerical solution.

  • PDF

Estimating groundwater recharge from time series measurements of subsurface temperature

  • Koo, Min-Ho;Kim, Yongje
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.213-216
    • /
    • 2003
  • Efforts for better understanding of the interaction between groundwater recharge and thermal regime of the subsurface medium is gaining momentum for its diverse applications in water resources. A numerical model is developed to simulate temperature variations of the subsurface under time varying groundwater recharge. The model utilizes MacCormack scheme for finite difference approximation of the partial differential equation describing the conductive and advective heat transport. For the estimation of recharge rate, optimization of the model is realized by searching for the unknown parameters which minimize the root-mean-square error between simulated and measured temperatures. Simulation results for 22-year time series data of temperature measurements reveal that the proposed model can accurately simulate subsurface temperature variations resulting from the redistribution of the heat due to the movement of water and it can also estimate temporal variations of recharge. Seasonal variations of recharge and a linear relationship between precipitation and recharge are clearly reflected in the simulated results.

  • PDF

Water Chemistry Profiles under Korean White Pine (Pinus koraiensis S. et Z.) Stand (잣나무 임분에 있어서 강우수질의 이동 특성)

  • Jin Hyun-O;Chung Doug-Young;Lee Choong-Hwa
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.110-118
    • /
    • 1999
  • This experiment was conducted to characterize the vertical transport trend of dissolved elements through throughfall, stemflow, effluent from Ao layer, and leachate out of soil profile on Pinus koraiensis stand in Experimental Forest of Kyunghee University, located in Kwangju, Kyunggi province for 12 months from July, 1998 to Jun, 1999. In addition, we investigated the content of dissolved elements and the factors influencing the water chemistry concentrations separately collected from the field. Water movement in the process of throughfall and stemflow from precipitation, and rainfall leached from Ao layer into soil water was governed by concentration of through fall, precipitation, rainfall intensity, seasonal variation, and other factors. Also, smaller changes of pH in soil water than that of dissolved elements in soil water could contribute buffer capacity, as well as balancing the concentration between cations and anions.

  • PDF

Development of Numerical Analysis Program Considering Variation of Soil Properties During Electrokinetic Remediation (Electrokinetic 정화 처리 중 토체내의 특성변화를 고려한 수치해석 프로그램 개발)

  • 한상재;김치열;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.202-205
    • /
    • 2001
  • In this study, the electrokinetic remediation test for the kaolin contaminated by lead was performed and voltage, zeta potential, pH distribution, current, contamination transport in soil sample were studied and finite differential numerical analysis program(HERP) for a contaminated soil were compared with those of test. From the result of HERP, in the anode it was represented that the rest concentration was decreased with the voltage. Hence, if treatment time was continued for a long in the constant voltage, comparing with sample having no change in the rest concentration, it is considered that the voltage gradient is the control factor of the rest concentration.

  • PDF

Concentration and Characteristic of PBDEs in Pine Needle and Soil of Ansung-city (안성 지역 소나무 잎과 토양 중 PBDEs의 농도 수준 및 특성)

  • Yeo, Hyun-Gu;Cho, Ki-Chul;Chun, Man-Young
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.111-117
    • /
    • 2006
  • Polybrominated diphenyl ethers (PBDEs) in pine needles and soil samples from rural area were analyzed in this study. Concentrations of PBDE congeners were ranged between 0.2 and 3104 pg/g DW(dry weight) in pine needles and between 2.4 and 1997 pg/g DW in soil samples. The most abundant congener both in pine needles and soil samples was BDE-209, which was related to importation and production of deca-BDE technical mixtures in Korean industry. And BDE-99, BDE-47, BDE-100 deposited in pine needles and soil samples were closely matched with the major constituents of the penta-BDE technical mixture. Those can be interpreted as an evidence that transfer of the congeners in deca-BDE and penta-BDE technical mixtures from source to pine needle and soil occurs with broadly similar efficiency. Correlation coefficient(r) of PBDE congeners deposited in pine needles and soil samples is very significant because it implies th at there has been little weathering/degradation/alteration of the congeners generated from sources during atmospheric transport or within pine needles and soil themselves.

A Mathematical Analysis of Water Flow Model Using Ohm's Analogy (Ohm의 법측(法測)을 이용(利用)한 물 이동(移動)의 수학적(數學的) 해석(解析))

  • Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 1981
  • A set of equations of a water transport model of the soil-plant system was described as an electrical circuit using the Ohm's analogy assuming that the transpirational pull be the main source of the driving force and the resistance be proportional to the inverse of the hydraulic conductivity of the catenary. The effective root resistance ($\hat{R}_{\tau}$) and the effective soil water potential ($\hat{\psi}_s$)were defined with the solution of the system; $$\hat{\psi}_s-\hat{R}_{\tau}g_{\tau}={\psi}_0$$ and the validity of the solution of the equation was demonstrated with the data obtained from a soybean field. ${\psi}_s$ and $R_{\tau}$ explained more reasonably than the average values taken so far. Therefore, the solution will describe the soil water status and the root resistance in terms of water transport in the soil-plant system.

  • PDF

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF