• Title/Summary/Keyword: Transport in soil

Search Result 526, Processing Time 0.029 seconds

Effects of Fracture Intersection Characteristics on Transport in Three-Dimensional Fracture Networks

  • Park, Young-Jin;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.27-30
    • /
    • 2001
  • Flow and transport at fracture intersections, and their effects on network scale transport, are investigated in three-dimensional random fracture networks. Fracture intersection mixing rules complete mixing and streamline routing are defined in terms of fluxes normal to the intersection line between two fractures. By analyzing flow statistics and particle transfer probabilities distributed along fracture intersections, it is shown that for various network structures with power law size distributions of fractures, the choice of intersection mixing rule makes comparatively little difference in the overall simulated solute migration patterns. The occurrence and effects of local flows around an intersection (local flow cells) are emphasized. Transport simulations at fracture intersections indicate that local flow circulations can arise from variability within the hydraulic head distribution along intersections, and from the internal no flow condition along fracture boundaries. These local flow cells act as an effective mechanism to enhance the nondiffusive breakthrough tailing often observed in discrete fracture networks. It is shown that such non-Fickian (anomalous) solute transport can be accounted for by considering only advective transport, in the framework of a continuous time random walk model. To clarify the effect of forest environmental changes (forest type difference and clearcut) on water storage capacity in soil and stream flow, watershed had been investigated.

  • PDF

A Mathematical Model Development for Microbial Arsenic Transformation and Transport

  • Lim, Mi-Sun;Yeo, In-Wook;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.318-322
    • /
    • 2004
  • Arsenic is a toxic and carcinogenic metalloid, whose sources in nature include mineral dissolution and volcanic eruption. Abandoned mines and hazardous waste disposal sites are another major source of arsenic contamination of soil and aquatic systems. To predict concentrations of the toxic inorganic arsenic in aqueous phase. the biogeochemical redox processes and transport behavior need to be studied together and be coupled in a reactive transport model. A new reaction module describing the fate and transport of inorganic arsenic species (As(II)), dissolved oxygen, nitrate, ferrous iron, sulfate, and dissolved organic carbon are developed and incorporated into the RT3D code.

  • PDF

Use of water retention curves predicted from particle-size distribution data for simulation of transport of Benzo[a]pyrene in soil

  • Cho Young-A;Hwang Sang-Il;Jang Yong-Chul;Lee Dong-Soo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.216-219
    • /
    • 2006
  • Water retention curve (WRC), one of soil hydraulic properties, is often approximated by property-transfer models (PTMs). Using the PTMs, we can estimate the WRCs from other physical properties such as particle-size distribution (PSD). The objective of this work was to investigate the performance of two PTMs with different origins for numerical simulations on transport of Benzo[a]pyrene in a soil. To do this, we chose both PTMs with different origins, i.e., (1) the lognormal distribution model (L anti NL models), and (2) the modified $Kov\'{a}cs$ model (MK model). The MK model showed tile worse performance in estimation of the WRCs. When transport of B[a]P was simulated, the MK model predicted to move farther than the L and NL models did, indicating that transport of B[a]P in a soil can be greatly influenced by the choice of PTMs.

  • PDF

Multi-Region Model of Solute Transport in Soil for the Preferential Flow (Preferential 흐름에 의한 토양내의 다영역 용질이동 모델)

  • 안병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.71-77
    • /
    • 2000
  • A multi-region model for solute transport through saturated soils has been developed to describe preferential flow. The model consists of numerous discrete pore groups, which are characterized by a discrete dispersion coefficient, flow velocity, and porosity . The hydraulic properties for each pore group are derived from a soil's hydraluic conductivity and soil water characteristic functions . Flow in pore group is described by the classical advection-disersion equation (ADE). An implict finite difference scheme was applied to the governing equation that results in a block-tridiagonal system of equations that is very efficient and allows the soil to be divided into any number of pore groups. The numerical technique is derived from methods used to solve coupled equations in fluid dynamics problems and can also be applied to the transport of interacting solutes. The results of the model are compared to the experimental data from published papers. This paper contributes on the characteristics of the method when applied to the parallel porosity model to describe preferential flow of solutes in soil.

  • PDF

대기압의 변화에 따른 휘발성 오염물질의 토양에서 대기로의 거동

  • Choi Ji-Won;Smith James A.;Hwang Gyeong-Yeop
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.114-116
    • /
    • 2005
  • Natural attenuation has been actively studied and often selected as final clean-up process in remediation of contaminated ground-water and soil for the last decade. Accordingly, understanding of natural processes affecting the fate and transport of contaminants in the subsurface becomes important for a success of implementation of the natural remediation strategy, Contaminant advection and diffusion processes in the unsaturated zone are naturally related to environmental changes in the atmosphere. The atmospheric pressure changes affecting the transport of contaminants in the subsurface are investigated in this study. Moisture content, trichloroethylene (TCE) concentration, temperature, and pressure variations in the subsurface were measured for the July, August, November, and December 2001 at Picatinny Arsenal, New Jersey. These data were used for a one-phase flow and one-component transport model in simulating the soil-gas flow and accordingly the TCE transport in the subsurface in accordance with the atmosphere pressure variations at the surface. The soil-gas velocities during the sampling periods varied with a magnitude of $10^{-6}\;to\;10^{-7}\;m\;s^{-1}$ at land surface. The TCE advection fluxes at land surface were several orders of magnitude smaller than the TCE diffusion fluxes. A sensitivy analysis indicated that advection fluxes were more sensitive to changes in geo-environmental conditions compared to diffusion fluxes. Of all the parameters investigated in this study, moisture content has the most significant effect on TCE advection and diffusion fluxes.

  • PDF

Development a numerical model of flow and contaminant transport in layered soils

  • Ahmadi, Hossein;Namin, Masoud M.;Kilanehei, Fouad
    • Advances in environmental research
    • /
    • v.5 no.4
    • /
    • pp.263-282
    • /
    • 2016
  • Contaminant transport in groundwater induces major threat and harmful effect on the environment; hence, the fate of the contaminant migration in groundwater is seeking a lot of attention. In this paper a two dimensional numerical flow and transport model through saturated layered soil is developed. Groundwater flow and solute transport has been simulated numerically using proposed model. The model implements the finite volume time splitting method to discretize the main equations. The performance, accuracy and efficiency of the out coming numerical models have been successfully examined by two test cases. The verification test cases consist of two-dimensional, groundwater flow and solute transport. The final purpose of this paper is to discuss and compare the shape of contaminant plume in homogeneous and heterogeneous media with different soil properties and control of solute transport using a zone for minimizing the potential of groundwater contamination; furthermore, this model leads to select the effective and optimum remedial strategies for cleaning the contaminated aquifers.

Transport Characteristics of Cd, Cu and Zn in a Sewage Sludge-Treated Calcareous Soil (하수오니 처리 석회질 토양에서의 Cd, Cu 및 Zn 의 수송 특성)

  • Lee, Sang-Mo;Cho, Chai-Moo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.412-420
    • /
    • 1999
  • A controlled column study using elution development and miscible displacement was conducted to assess heavy metal transport characteristics in sludge-untreated soil ("Control"), soil treated with an equivalent of sludge 50 and 100 dry ton $ha^{-1}$ ("Soil-Sludge mixtures"), and sewage sludge ("Sludge"). The elution curves (ECs) and the breakthrough curves (BTCs) for Cd, Cu and Zn in sludge 50 and 100 dry ton $ha^{-1}$ treated soils are not different from the sludge-untreated soil, The ECs for Cd, Cu and Zn in soil column which received a pulse of 10 mg of each Cd, Cu and Zn were similar to those of Cd, Cu and Zn in soil column which had no Cd, Cu and Zn added, but were very different with the ECs for Cd, Cu and Zn in soil column which received a pulse of Cd, Cu and Zn containing 50 mg of each metal. On the other hand, the BTCs for Cd, Cu and Zn in soil columns that were eluted with 500 and $1000mg\;L^{-1}$ of mixed solution of Cd, Cu and Zn were similar to each other, but were distinctly different with the BTCs for Cd, Cu and Zn in soil column that was eluted with $100mg\;L^{-1}$ mixed solution of Cd, Cu and Zn. Sewage sludge applied at rates of 50 and 100 dry ton $ha^{-1}$ did not affect the transport characteristics of this calcareous soil. The apparent mobility for this sludge treated soil and sludge is: Cd >Zn>Cu. The transport characteristics of Cd and Zn are similar to each other, but are different from those of Cu.

  • PDF

농경지 토양에서 N과 P의 거동 특성

  • 최태범;장윤영;이기철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.451-454
    • /
    • 2003
  • Nonpoint source pollution of groundwater and subsurface water from irrigated agriculture is a major concern in many areas. In this study we aimed to investigate the effect of the water applied by irrigation in agricultural area on the transport of nitrogen and phosphorus originated from fertilizers applied to the surface of soil in agricultural activities. We first conducted investigation on the resdual concentrations of soil N and P in a selected agricultural area. And simulating the target area by column studies in the laboratory leaching extent of various components from the composite and urea fertilizers applied on the soil surface during irrigation was studied. Infiltration of water enhanced the leaching of nitrogen and phosphorus in both the rice paddy field soil and the patch soil. The downward N and P transport with infiltrating water was more pronounced in the patch soil column and the increased residual concentrations of N and P in the lower sections in the patch soil column was found with time.

  • PDF

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Modeling the sensitivity of hydrogeological parameters associated with leaching of uranium transport in an unsaturated porous medium

  • Mohanadhas, Berlin;Govindarajan, Suresh Kumar
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.462-473
    • /
    • 2018
  • The uranium ore residues from the legacies of past uranium mining and milling activities that resulted from the less stringent environmental standards along with the uranium residues from the existing nuclear power plants continue to be a cause of concern as the final uranium residues are not made safe from radiological and general safety point of view. The deposition of uranium in ponds increases the risk of groundwater getting contaminated as these residues essentially leach through the upper unsaturated geological formation. In this context, a numerical model has been developed in order to forecast the $^{238}U$ and its progenies concentration in an unsaturated soil. The developed numerical model is implemented in a hypothetical uranium tailing pond consisting of sandy soil and silty soil types. The numerical results show that the $^{238}U$ and its progenies are migrating up to the depth of 90 m and 800 m after 10 y in silty and sandy soil, respectively. Essentially, silt may reduce the risk of contamination in the groundwater for longer time span and at the deeper depths. In general, a coupled effect of sorption and hydro-geological parameters (soil type, moisture context and hydraulic conductivity) decides the resultant uranium transport in subsurface environment.