• 제목/요약/키워드: Transport current loss

검색결과 98건 처리시간 0.022초

YBCO 박막형 선재를 이용한 초전도 전류제한기의 연계에 따른 고온 초전도 케이블의 사고전류 통전 특성에 관한 연구 (Study on Transport Current Properties of HTS cable connected with SFCL by using YBCO Thin Film type wire)

  • 이동혁;김용진;한병성;두호익;한상철;이정필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.43-43
    • /
    • 2010
  • HTS(High Temperature Superconductor) cable has a high possibility of practical use due to the possibility of low voltage and high capacity transmission caused by its lower power loss than copper cable. On the other hand, when fault current occurred, resistance increase caused by superconductivity loss, the amount of power supplies has diminished, furthermore, it's necessary to take the possible danger of damage to HITS cable into account. Therefore, an effective plan for dealing with the above problem is to link HITS cable to SFCL. In this study, we researched the possibilities of normal transport current as well as the safety of HITS cable by analyzing the properties of transport current in HITS cable connected with SFCL.

  • PDF

다층 고온 초전도케이블에서의 전류분류 및 손실 계산 (Current Distribution and Loss Calculation of a Multi-layer HTS Transmission Cable)

  • 이승욱;차귀수;이지광;한송엽
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2000년도 KIASC Conference 2000 / 2000년도 학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2000
  • Superconducting transmission cable is one of interesting part in power application using high temperature super-conducting wire as transformance. One important parameter in HTS cable design is transport current distribution because it is related with current transmission capacity and loss. In this paper, we present the calculation theory of current distribution for multi-layer cable using the electric circuit model and in example, calculation results of current distribution and AC loss in each layer of 4-layer HTS transmission cable.

  • PDF

Coated Conductor를 사용한 무유도 팬케이크형 한류 코일의 통전 손실 특성 (Transport Loss Characteristic of the Bifilar Pancake Type Fault Current Limiting Coil using Coated Conductor)

  • 박동근;방주석;양성은;안민철;심기덕;윤용수;남관우;석복렬;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권3호
    • /
    • pp.21-25
    • /
    • 2007
  • Superconducting fault current limiter (SFCL) is attractive apparatus to reduce fault current in power grid. Since it is applied to the alternating current (AC) power line, the SFCL has losses in the normal operation. Recently, coated conductor (CC) is noticeable material employed for resistive bifilar winding type SFCL in many research groups. Bifilar structure is expected to have low AC loss by magnetic field offset as compared with the single tape structure in the same length. This paper reports about characteristic of bifilar pancake type coil for SFCL application in AC loss aspect. The bifilar coil is wound using CC with facing on HTS sides each other. Transport AC loss measurement and characteristic analysis of the bifilar coil using CC have been performed at 77K. The test results are compared with the Norris equations and the test results of non-inductively wound paralleled solenoid type coil which is suggested and tested in this group at present.

A Study of Characteristic of Electrical-magnetic and Neutron Diffraction of Long-wire High-superconductor for Reducing Energy Losses

  • Jang, Mi-Hye
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권6호
    • /
    • pp.265-272
    • /
    • 2008
  • In this paper, AC losses of long wire Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist. The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-prob method. And the Magnetic measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O).

전류분포가 3본-도체의 임계전류/교류손실 특성에 미치는 영향 (Influence of Current Distributions on Critical Current and AC Loss Characteristics in a 3-conductor)

  • 류경우;최병주
    • 한국전기전자재료학회논문지
    • /
    • 제16권5호
    • /
    • pp.418-423
    • /
    • 2003
  • AC loss is an important issue in the design of high-T$\sub$c/ superconducting power cables which consist of a number of Bi-2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. So special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work we have prepared a conductor composed of three Bi-2223 tapes with different critical currents. The critical current and AC loss characteristics in the conductor have experimentally investigated. The results show that for uniform current distributions the conductor's critical current is proportional to the critical current of the Bi-2223 tape to which a voltage lead is attached. However it depends on the current non-uniformity parameter in the conductor rather than the tape's critical currents for nonuniform current distributions. The loss tests indicate that the AC loss is dependent on arrangements of voltage leads but not on their contact positions. The measured losses in the conductor also agree well with the sum of the transport losses measured in each Bi-2223 tape.

22.9kV/50MVA급 고온초전도 전력케이블의 교류손실 (The AC loss of 22.9kV/50MVA High-Tc Superconducting Power Cable)

  • 최석진;이상진;심기덕;조전욱;이수길;양병모;윤형희
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.31-34
    • /
    • 2009
  • An HTS power cable is generally composed of 2 layers for conducting and 1 layer for shielding. For the analysis of AC loss of an HTS power cable, 2-dimensional magnetic field analysis is carried out. The magnetization loss in HTS cable core was calculated, and the transport current loss was obtained from the monoblock equation and the elliptical Norris Equation. And the total AC loss of the cable was expected by the sum of magnetization loss and transport current loss. The variation of ac loss with respect to the gap and uncertain factor between the superconducting tapes was investigated, and the ac loss of 22.9kV/50MVA high-Tc superconducting power cable was calculated. These results well agree with those of experiment.

Prototype 고온초전도 케이블의 최소 Quench에너지 및 대전류 특성 (A Characteristics of Large Current and Minimum Quench Energy on Prototype High-$T_c$ Superconducting Cable)

  • 김상현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.236-242
    • /
    • 2000
  • NZP velocities were investigated on Ag sheathed multi filamentary Bi-2223 tape and direction type HTS cable. The critical current($I_c$) of Ag sheathed Bi-2223 tape and direction type HTS cable were 12 A, 63 A at 77 K, 0 T. NZP velocities of tape with two condition of DC and AC were almost same at each temperature. In case of DC, the NZP velocities of numerical analysis and experiment were almost same. NZP velocities of direction type HTS cable were 1.9-2.4 cm/sec. The result shows that the total transport current of spiral type HTS cable in $LN_2$ was 475[A], and transport current passed through almost the outer layer (2-layer). Also, AC transport losses in outer layer of HTS cable was proportion to $I^2$ and higher than losses of inner layer. And in case of $I_p=I_c$, calculated numerical loss density was concentrated on the edge of tape and most of loss density in cable was distributed outer layer more than inner layer.

  • PDF

장척 Bi-2223/AgMgNi 테이프의 자기자계손실 특성 (Self-field Loss Characteristics of a long Bi-2223/AgMgNi Tape)

  • 류경우;박권배;차귀수;최경달;이지광;한송엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권4호
    • /
    • pp.240-245
    • /
    • 2000
  • The self-field losses in a long multifilamentary Bi-2223/AgMgNi tape with varying transport current, voltage tap configurations, frequency and tape arrangements were investigated. Experimental results show that the measured losses are strongly dependent on voltage gap configurations but independent on tape arrangements. All voltage taps except the center tap are found to agree well with those predicted by Norris for an elliptical conductor. The self-field losses are purely hysteretic in nature in the range of applied frequencies for the transport currents below the critical current.

  • PDF

AC transport current loss analysis for anti-parallel current flow in face-to-face stacks of superconducting tapes

  • Yoo, Jaeun;Han, Young-Hee;Kim, Hey-Rim;Park, Byung-Jun;Yang, Seong-Eun;Kim, Heesun;Yu, Seung-Duck;Park, Kijun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.42-46
    • /
    • 2014
  • In this study we investigated ac transport current losses in the face to face stack for the anti-parallel current flow, and compared the electromagnetic properties with those of the single SC tape as well as those of the same stack for the parallel current path. The gap between the SC tapes in the stack varied in order to verify the electromagnetic influence of the neighbors when current flows in opposite direction, and the model was implemented in the finite element method program by the commercial software, COMSOL Multiphysics 4.2a. Conclusively speaking, the loss was remarkably decreased for the anti-parallel current case, which is attributed the magnetic flux compensation between the SC layers due to the opposite direction of the current flows. As the gap between SC tapes was increased, the loss mitigation became less effective. Besides, the current density distribution is very flat cross the sample width for the narrower gap case, which is believed to be benefit for the power electric system. These results are all in good agreement with those predicted theoretically for an infinite bifilar stack.

차폐층을 고려한 고온초전도 전력 케이블의 전류분류 해석 (Analysis of Current Distribution of HTSC Power Cable Considering Shield Layer)

  • 이종화;임성훈;고석철;박충렬;한병성;황시돌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.12-14
    • /
    • 2004
  • Superconducting transmission power cable is one of interesting parts in power application using high temperature superconducting wire. One of import ant parameters in high-temperature superconduting (HTSC) cable design is transport current distribution because it is related with current transmission capacity and AC loss. In this paper, the transport current distribution at conducting layers was investigated through the analysis of the equivalent circuit for HTSC power cable with shield layer and compared with the case of without shield layer. The transport current distribution due to of the contact resistance and the pitch was improved in the case of HTSC power cable with shield layer from the analysis.

  • PDF