• 제목/요약/키워드: Transport Mechanism

Search Result 895, Processing Time 0.031 seconds

Improving the TCP Retransmission Timer Adjustment Mechanism for Constrained IoT Networks

  • Chansook Lim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2024
  • TCP is considered as one of the major candidate transport protocols even for constrained IoT networks..In our previous work, we investigated the congestion control mechanism of the uIP TCP. Since the uIP TCP sets the window size to one segment by default, managing the retransmission timer is the primary approach to congestion control. However, the original uIP TCP sets the retransmission timer based on the fixed RTO, it performs poorly when a radio duty cycling mechanism is enabled and the hidden terminal problem is severe. In our previous work, we proposed a TCP retransmission timer adjustment scheme for uIP TCP which adopts the notion of weak RTT estimation of CoCoA, exponential backoffs with variable limits, and dithering. Although our previous work showed that the proposed retransmission timer adjustment scheme can improve performance, we observe that the scheme often causes a node to set the retransmission timer for an excessively too long time period. In this work, we show that slightly modifying the dithering mechanism of the previous scheme is effective for improving TCP fairness.

Active Transport of Anions through Synthesized Polymer Membrane with Pyridine as Fixed Carrier (피리딘 고정전달자를 함유한 합성 고분자막을 통한 음이온의 능동전달)

  • 이용현;한정우박돈희조영일
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.241-247
    • /
    • 1991
  • The Poly (4-vinyipyridine-co-styrene) membrane containing Pyridine as fixed carrier was synthesized and characterized. And the active transport mechanism of Cl- and $CCl_3COO^-$ with changing concentration of $H^+$ and $OH^-$ was investigated. $CCl_3COO^-$ was transported not only by a symport mechanism with $H^+$ transfer but also by an antiport mechanism with $OH^-$transfer, while $Cl^-$ was transported only by a symport mechanism with $H^+$ transfer. Observing the initial flux of anions, salt formation constant between ions and membrane (K), and diffusion coefficient in membrane (D) were calculated as follows: for $Cl^-, \;K=4.60{\times}10^2\;mol^{-1}{\cdot}\textrm{cm}^3, \;D=1.57{\times}10^{-3}{\textrm{cm}^2/h$ and for $CCl_3COO^-, \;K=1.l0{\times}10^4\;mol^{-1}{\cdot}\textrm{cm}^3, \;D=1.14{\times}10^{-4}{\textrm{cm}^2}/h$.

  • PDF

Percolation Approach to the Morphology of Rigid-Flexible Block Copolymer on Gas Permeability

  • 박호범;하성룡;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.69-70
    • /
    • 1997
  • Polyimides and related polymers, when synthesized from aromatic monomers, have generally rigid chain structures resulting in a low gas permeability. The rigidity of polymer chains reduces the segmental motion of chains and works as a good barrier against gas transport. To overcome the limit of use as materials of gas separation membranes due to low gas permeability, block copolymers with the incorporation of flexible segments like siloxane linkage and ether linkage have been studied. These block copolymers have microphase-separated structures composed of microdomains of flexible poly(dimethylsiloxane) or polyether segments and of rigid polyimides segments. In case of rigid-flexible block copolymers, the characteristics of both phases for gas permeation are of great difference. The permeation of gas molecules occurs favorably through microdomains of flexible segments, whereas those of rigid segments hinder the permeation of gas molecules. Accordingly the increase of content of flexible segments in a rigid polymer matrix will increase the gas permeability of the membrane linearly. However, this prediction does not satisfy enough many experimental results and in particular the drastic increase of the permeability is observed in a certain volume fraction. It was proposed that the gas transport mechanism is dominated by diffusion rather than gas solubility in a certain content of flexible phase if solution-diffusion mechanism is adopted. However, the transition from solubility-dependent to diffusion-dependent cannot be explained by the understanding of mechanism itself. Therefore, we consider an effective chemical path which permeable phase can form in a microheterogenous medium, and percolation concept is introduced to describe the permeability transition at near threshold where for the first time a percolation path occurs. The volume fraction of both phases is defined as V$_{\alpha}$ and V$_{\beta}$ in block copolymers, and the volume of $\beta$ phase in the threshold forming geometrically a traversing channel is defined as V$_{\betac}$. The formation mechanism of shortest chemical channel is schematically depicted in Fig. 1.

  • PDF

Mechanism and Regulation of Amino Acid Transport in Mammary Gland - Review -

  • Kansal, Vinod K.;Sharma, Rekha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.710-719
    • /
    • 2001
  • Several amino acid transport systems in mammary gland have been characterized during the last few years. These systems may be divided into two broad categories based on whether they are sodium-dependent or $Na^{+}$-independent, and each of these categories is subdivided into 3 groups depending on whether the systems prefer zwitterionic, cationic or anionic substrates. The zwitterion preferring transport processes in mammary gland are $Na^{+}$-dependent system A and $Na^{+}$-independent systems L and T. System $y^{+}$ is a $Na^{+}$-independent transporter of cationic amino acids and $X_{AG^{-}}$ is a $Na^{+}$-dependent system for anionic amino acids. A ($Na^{+}+Cl^{-}$)-dependent system, selective for $\beta$-amino acids has been reported in rat mammary tissue. In addition, there is yet another class of transporters that have still broader specificity. The $Na^{+}$-dependent systems $BCl^{-}$-dependent and $BCl^{-}$-independent and $Na^{+}$-independent system $y^{+}L$ have been reported to mediate the transport of zwitterionic as well as cationic amino acids. Each system has been characterized with respect to its substrate specificity, affinity, kinetics and ion-dependence. Transport of amino acids by mammary tissue is regulated by i) the intracellular substrate concentration, ii) lactogenic hormones and iii) milk stasis. Four of the above transport systems (i.e. A, L, $y^{+}$ and $BCl^{-}$-independent) are up-regulated by lactogenic hormones (insulin, cortisol and prolactin) in mammary gland.

Cloning of a Novel $Na^+$-Dependent L-Serine Specific Symporter Gene from Haemophilus influenzae Rd and Characteristics of the Transporter

  • Kim, Young-Mog;Rhee, In-Koo;Tsuchiya, Tomofusa
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.520-524
    • /
    • 2004
  • A protein that exhibited a high similarity to a major serine transporter of Escherichia coli, SdaC, was found in Haemophilus injluenzae Rd. Also, $Na^+$-stimulated serine transport activity was detected in the cells. The sdaC of H. injluenzae was cloned and the properties of the transporter were investigated. The activity of serine transport was stimulated by $Na^+$. Uptake of $Na^+$ elicited by L-serine influx into cells was also observed, which supports the idea that L-serine is transported by a mechanism of $Na^+$serine symport. No uptake of $H^+$ elicited by L-serine influx was detected. This result was not consistent with that obtained with the homologous protein, SdaC of E. coli, which uses $H^+$as a coupling cation. The serine transport via the SdaC of H. influenzae was not inhibited by other amino acids such as threonine or D-serine like the SdaC of E. coli. Thus, the SdaC of H. influenzae is a $Na^+$-dependent L-serine specific symporter and an unusual natural mutant. The $K_m$ and the $V_{max}$, value for the serine transport in the SdaC of H. influenzae were $7.6\mu$M and 22.9 nmol/min/mg protein, respectively.

A Survey on the Long-range Transport of Sulfur Compounds by Aircraft Measurement over the Yellow Sea in 1998 (황해상공에서의 항공기관측에 의한 황화합물 장거리이동 특징에 대한 조사)

  • 김병곤;안준영;김종호;박철진;한진석;나진균;최양일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.713-725
    • /
    • 1999
  • Air pollutants($SO_2$, NOx, $O_3$ and aerosol number) were measured using an aircraft to investigate the characteristical features of long-range transport of sulfur compounds over the Yellow Sea for the periods of 26~27 April and 7~10 November in 1998. The mean $SO_2$ concentrations of April 26th~27th and November 7th~10th flight were 0.6~1.8 ppb and 0.5~8.3 ppb, respectively, and the sulfur transport was largely limited to the atmospheric boundary layer. Especially, $SO_2$ increased up to 8.3 ppb altogether with the increase of particle number concentraton especially on November 8, 1998. In addition, $O_3$ was remarkably decreased against the increase of $SO_2$and particle number concentrations. This enhanced $SO_2$ concentration occurred in the low level westerlies in association with the anticyclonic flow over Southern China and the cyclonic circulation over Manchuria. Aerosol analyses at Taean site also showed that sulfate concentration increased 2~3 times higher than those of another sampling days, which could suggest possible interactions between aerosol particels and tropospheric ozone. A rigorous evaluation will be possible after the more intensive measurements and quantitative analyses with detailed chemistry model including the postulated heterogeneous mechanism.

  • PDF

Dehydration of Pyridine Aqueous Solution through Poly(acryionitrile-co-4-styrene sulfonic acid) Membranes by Pervaporation

  • Wang, Wun-Jae;Oh, Boo-Keun;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.55-56
    • /
    • 1994
  • There has been many attempts to improve the membrane performance using pervaporation processes[l-3]. They are 1) blending polymer with the high flux and one with high selectivity, 2) an incorporation of functional groups interacting with permeants into a membrane through copolymerization or modification, 3) composite membrane or asymmetric membrane structure with a thin skin layer which acts as a selective layer. Among them, a polymeric membrane containing ion complex group receives an extensive attention recently because ionic complex is known to activate the water transport through ion-dipole interaction. It is especially advantageous in the separation of organic-water system. We applied the ideas of the activation of water transport through ion-dipole. We have reported on the in-sire complex membrane to separate water from aqueous aceiic acid and pyridme solution[4-5] based on the simple acid-base theory. Water transport was enhanced through in-situ complex between pyridine moiety in the membrane and the incoming acetic acid in the feed. In this case, catalytic transport mechanism was proposed. In the present study we used pyridine solution as a feed and the sulfonic acid group in the membrane.

  • PDF