• Title/Summary/Keyword: Transparent glass-ceramic

Search Result 82, Processing Time 0.02 seconds

Preparation of p-type transparent semiconductor $SrCu_2O_2$ thin film by RF magnetron sputtering (RF 마그네트론 스퍼터링에 의한 p형 투명 반도체 $SrCu_2O_2$ 박막의 제조)

  • Kim, Sei-Ki;Seok, Hye-Won;Lee, Mi-Jae;Choi, Byung-Hyun;Jeong, Won-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.47-47
    • /
    • 2008
  • P-type transparent semiconductor $SrCu_2O_2$ thin films have been prepared by RF sputtering using low-alkali glass for LCD and quartz as substrates. Single phase of $SrCu_2O_2$ powder was obtained by heating a stoichiometric mixture of CuO and $SrCO_3$ at 1223K for 96h under N2 gas flow, and target was fabricated at 1243K for 24h. Room temperature conductivity of the sintered body was about 0.02S/cm, and the activation energy in the temperature range of $-50^{\circ}C$~RT and RT~$150^{\circ}C$ were 0.18eV, 0.07eV, respectively. Effects of deposition pressure and post-annealing temperature on the electrical and optical properties of the obtained thin film have been investigated.

  • PDF

A Study on the Preparation of CdS Doped $SiO_2$ Glass Coating Films by Sol-Gel Method (졸-겔법에 의한 CdS 분산 $SiO_2$ Glass 코팅막의 제조에 관한 연구)

  • 박한수;김경문;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.897-904
    • /
    • 1993
  • CdS doped SiO2 glass coating films which are good candidates for the nonlinear optical materials were prepared by the Sol-Gel method. TEOS, C2H5OH, H2O and HCl were used as starting materials to obtain SiO2 matrix solutions. Then Cd(NO3)2.2H2O and CS(NH2)2 were dissolved into the SiO2 matrix solutions. Coating was performed several times in order to increase the thickness of coated film by the dip-coating method. Then heat treatments were carried out to control the size of CdS microcrystals doped in SiO2 glass matrix with respect to temperatures and times. CdS-doped SiO2 transparent coating films were successfully obtained. CdS crystals were changed from cubic to hexagonal type about $600^{\circ}C$.

  • PDF

Development of Transparent Dielectric Paste for PDP

  • Kim, Hyung-Jong;Kyoung Joo;Auh, Ken-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.79-83
    • /
    • 1998
  • Plasma display panel is a potential candidate for HDTV, due to the fact hat the expansion of screen size is much easier using thick film technology. In this study, transparent dielectric materials using lead borosilicate glasses is developed, which satisfy the requirements of dielectrics for PDP. Paste is made of this glass composition. The paste has thixotropic behavior suitable for screen printing. The paste shows more thixotropic behavior as the particle size decrease. After firing, cross sectional area was analyzed by SEM. The void of fired thick film was removed using bimodal particle system. The dielectric showed good adhesion characteristics.

  • PDF

Preparation and Dielectric Behavior of D-Glass with Different Boron Contents (보론함량에 따른 D-glass의 유전율 특성)

  • Jeong, Bora;Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Shin, Dongwook;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.39-42
    • /
    • 2017
  • E-glass (electrical glass) fiber is the widely used as a reinforced composite material of PCBs (printed circuit boards). However, E-glass fiber is not stable because it has a dielectric constant of 6~7. On the other hand, D-glass (dielectric glass) fiber has a low dielectric constant of 3~4.5. Thus, it is adaptable for use as a reinforcing material of PCBs. In this study, we fabricated D-glass compositions with low dielectric constant, and measured the electrical and optical properties. In the glass composition, the boron content was changed from 9 to 31 wt%. To confirm the dependence of the dielectric constant on melting properties, D-glass with 22 wt% boron was melted at $1550^{\circ}C$ and $1650^{\circ}C$ for 2hrs. The glass melted at $1650^{\circ}C$ had a lower dielectric constant than the glass melted at $1550^{\circ}C$. Therefore, the D-glass with boron of 9~31 wt% was fabricated by melting at $1650^{\circ}C$ for 2hrs, and transparent clear glass was obtained. We identified the non-crystalline nature of the glass using an XRD (x-ray diffractometer) graph. The visible light transmittance values depending on the boron contents were measured and found to be 88.6 % ~ 82.5 %. Finally, the dielectric constant of the D-glass with 31 wt% boron was found to have decreased from 4.18 to 3.93.

Physical Properties of Alkali Resistant-Glass Fibers with Refused Coal Ore in Continues Fiber Spinning Conditions

  • Ji-Sun Lee;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.355-362
    • /
    • 2024
  • AR (alkali resistant)-glass fibers were developed to provide better alkali resistance, but there is currently no research on AR-glass fiber manufacturing. In this study, we fabricated glass fiber from AR-glass using a continuous spinning process with 40 wt% refused coal ore. To confirm the melting properties of the marble glass, raw material was put into a (platinum) Pt crucible and melted at temperatures up to 1,650 ℃ for 2 h and then annealed. To confirm the transparent clear marble glass, visible transmittance was measured and the fiber spinning condition was investigated by high temperature viscosity measurement. A change in diameter was observed according to winding speed in the range of 100 to 700 rpm. We also checked the change in diameter as a function of fiberizing temperature in the range of 1,240 to 1,340 ℃. As winding speed increased at constant temperature, fiber diameter tended to decrease. However, at fiberizing temperature at constant winding speed, fiber diameter tended to increase. The properties of the prepared spinning fibers were confirmed by optical microscope, tensile strength, modulus and alkali-resistance tests.

Fabrication and Properties of D-Glass Fiber with Low Dielectric Constant (저유전율을 가지는 D-Glass Fiber의 제조 및 특성)

  • Jeong, Bora;Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Shin, Dongwook;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.254-259
    • /
    • 2018
  • General D-glass(Dielectric glass) fibers are adaptable to PCBs(Printed circuit boards) because they have a low dielectric constant of about 3.5~4.5. However, very few papers have appeared on the physical characteristics of D-glass fibers. D-glass fibers were fabricated via continuous spinning process using bulk D-glass. In order to fabricate the D-glass, raw materials were put into a Pt crucible, melted at $1650^{\circ}C$ for 2 hrs, and then annealed at $521{\pm}10^{\circ}C$ for 2 hrs. We obtained transparent clear glass. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1368^{\circ}C$ to $1460^{\circ}C$, while the winder speed was between 100 rpm and 200 rpm. We investigated the physical properties of the D-glass fibers. The average diameters of the glass fibers were measured by optical microscope and FE-SEM. The average diameters of the D-glass fibers were 21.36 um at 100 rpm and 34.06 um at 200 rpm. The mechanical properties of the fibers were confirmed using a UTM(Universal materials testing machine). The average tensile strengths of the D-glass fibers were 467.03 MPa at 100 rpm and 522.60 MPa at 200 rpm.

Fabrication and characterization of boron free E-glass fiber compositions (붕소를 함유하지 않는 E-glass fiber의 제조 및 특성에 대한 연구)

  • Lee, Ji-Sun;Lim, Tae-Young;Lee, Yo-Sep;Lee, Mi-Jai;Hwang, Jonghee;Kim, Jin-Ho;Hyun, Soong-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • E-glass fiber is the most widely used glass fiber for reinforced composite materials of aircrafts, automobiles and leisure equipments. But recently researches are being progressed to reduce boric oxide from 8 % to 0 (zero), as is called 'Boron free E-glass', because of increasing material cost, environmental problem, and improving chemical resistance and mechanical properties of E-glass fiber. In this study, we fabricated the bulk glass and fiber glass of 'Boron free E-glass (BF) compositions', and characterized thermal properties and optical properties. 'Boron free E-glass (BF)' was obtained by the melting of mixed batch materials at $1550^{\circ}C$ for 2 hrs with different $Al_2O_3$ compositions 5~10 %. We obtained transparent clear glass with high visible light transmittance value of 81~86 %, and low thermal expansion coefficient of $4.2{\sim}4.9{\times}10^{-6}/^{\circ}C$ and softening point of $907{\sim}928^{\circ}C$. For the chemical resistance test of 'BF' fiber samples, we identified that the higher alumina contents gives the better corrosion resistance of glass fiber.

Fabrication of Transparent Conducting Thin Film with High Hardness by Wet Process (습식 공정법에 의한 고경도 투명 전도막 제조)

  • Park, Jong-Guk;Jeon, Dae-Woo;Lee, Mi-Jai;Lim, Tea-Young;Hwang, Jonghee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.826-830
    • /
    • 2015
  • Transparent Ag nanowire conducting thin films with high surface hardness were fabricated by bar coating method. When coating speed was changed from 35 mm/sec to 50 mm/sec, the transmittance of coated glass increased from 65.3% to 80.8% in visible light range and the surface resistance was changed from $10.1{\Omega}/sq$ to $23.3{\Omega}/sq$. The surface hardness and adhesion of thin film were 5H and 5B.

졸-겔법에 의한 CdS 분산$SiO_2$ Glass 박막의 비선형광학특성

  • 문종수;강종봉;김경문
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1353-1364
    • /
    • 1996
  • Recently semiconductor doped glasses have attracted attention as nonlinear optical materials because of their large third order nonlinear optical properties. The transparent and homogeneous CdS-doped SiO2 glass thin films were obtained by the dip=coating process of the sol-gel method. Thin films were consisted of glasses containing CdS microcrystallites which were formed by dissolved Cd2+ and S2- ions in a SiO2 matrix solutions. A subsequent thermal treatment of this samples led the formation of colloidal agglomerates and finally of microcrystallites. The size of CdS microcrystallites was about 4 to 15 nm after thermal treatments at various heating conditions. From the optical absorption spectra of the CdS-doped SiO2 glass films it was found that the absorption edge was blue-shifted compared with that of the bulk CdS crystal(~2, 4 eV) and that the amount of energy shift was inversely proportional to the crystal size. And the band gap energy increased with the decrease in crystallite size indicating that the quantum size effects occured.

  • PDF

A Study on the Transparent Glass-Ceramics on the MgO-$Al_2O_3$-$SiO_2$ System (투명 결정화유리에 관한 연구 MgO-$Al_2O_3$-$SiO_2$계에 대하여)

  • 박용완;김형준
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.406-414
    • /
    • 1991
  • The composition of base glass was selected as MgO 8, Al2O3 24, SiO2 68 in weight percent. TiO2 and ZrO2 were added to the base glass to investigate their effects as nucleating agents. In the case of ZrO2 addition, the optimum temperature for nucleation, which was related to the precipitation of tetragonal ZrO2, was 80$0^{\circ}C$. The optimum growth condition for the crystal was 87$0^{\circ}C$ for 8 hrs, and the major crystal phases precipitated in the samples were $\beta$-quartz ss. and mullite. The light transmissivity turned out to be around 80 per cent. On the other hand, when the TiO2 was added, it was difficult to determine the nucleating temperature, because the samples turned easily into translucency during the heat treatment. Therefore, it was almost impossible to retain transparency in the samples. The light transmissivity was below 30 per cent.

  • PDF