• Title/Summary/Keyword: Transparent display

Search Result 496, Processing Time 0.029 seconds

Flexible Visuo-haptic Display (필름형 유연 시-촉각 융합 디스플레이)

  • Yun, Sungryul;Park, Suntak;Park, Bongje;Park, Seung Koo;Nam, Saekwang;Kyung, Ki-Uk;Prahlad, Harsha;von Guggenberg, Philip
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.156-163
    • /
    • 2013
  • This paper describes a flexible visuo-haptic display module. We have developed a flexible electro-active polymer (EAP) actuator and a thin flexible visual display with $3{\times}3$ array configuration via polymer technology. The flexible actuator consists of nine EAP cells vertically moving in response to change in their thickness. The flexible display uses polymer based optical waveguide allowing light to scatter only at specific area. The display film is transparent and identically designed to the array pattern to fit for the arrangement of actuator cells. A pressure sensor is installed under the integrated module. The performance of the actuator is proved to be sufficient for satisfying perceivable range of human touch sense. The integrated system can provide interactive haptic feedback such as key pressing, contact vibration sensations, and etc. in accordance with user input.

Top Emission Organic Light Emitting Diode with Transparent Cathode, Ba-Ag Double Layer

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of Information Display
    • /
    • v.7 no.3
    • /
    • pp.23-26
    • /
    • 2006
  • We fabricated top emission organic light emitting diode (TEOLED) with transparent metal cathode Barium and Silver bilayer. Very thin Ba/Ag bilayer was deposited on the organic layer by thermal evaporation. This cathode showed high transmittance over 70% in visible range, and the device with a Ba-Ag has a low turn on voltage and good electrical properties.

Hydrothermal Synthesis of Red-Emitting Y(V0.5,P0.5)O4:Eu Nanophosphors and their Application to Transparent Plasma Display Fabrication (적색발광 Y(V0.5,P0.5)O4:Eu 나노형광체의 수열 합성 및 투명 플라즈마 디스플레이 소자 제작으로의 응용)

  • Song, Woo-Seuk;Yang, Hee-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.86-93
    • /
    • 2011
  • Transparent plasma display can be realized by developing the synthetic chemistry of appropriate nanophosphors and generating nanophosphor-based transparent luminescent layers. For this goal, red-emitting $Y(V_{0.5},\;P_{0.5})O_4$:Eu nanophosphors were synthesized by a facile hydrothermal route at $200^{\circ}C$ for 48 h and the resulting nanophosphors were subsequently annealed at $800^{\circ}C$ at an ambient atmosphere. The crystallographic structure, morphology, and emission property of the as-synthesized and annealed nanophosphors were compared. Choosing 2-methoxyethanol as a dispersion medium and applying a standard sonication, well-dispersed nanophosphor solutions could be prepared. Using these dispersions, visible transparent nanophosphor layers were spin-deposited on glass substrates. By combining $Y(V_{0.5},\;P_{0.5})O_4$:Eu nanophosphor layer/glass substrate as a rear plate with a front plate used in a conventional plasma display panels (PDPs), mini-sized transparent red-emitting PDPs were constructed. Transmittance and luminance properties of two transparent test panels using as-synthesized versus $800^{\circ}C$-annealed nanophosphors were characterized and compared.

Study on Electro Optic Characteristics of In-plane Switching Mode Liquid Crystal Display using Transparent Electrode

  • Song, Il-Sub;Baik, In-Su;Kim, Tae-Man;Lee, Seung-Hee;Kim, Do-Sung;Soh, Hoe-Sub;Kim, Woo-Yeol
    • Journal of Information Display
    • /
    • v.5 no.3
    • /
    • pp.18-24
    • /
    • 2004
  • Voltage-dependent transmittance characteristics associated with various cell parameters have been studied in-plane switching liquid crystal display when both common and pixel electrodes are transparent. When both electrodes are opaque, the transmittance is related to only the distance (I) between electrodes. However, where transparent electrode is used, it is influenced not only the 1but also an electrode width (w) and rubbing angle. In addition, these factors are related to operating voltage which shows maximal transmittance. To maximize the light efficiency of the cell and obtain low operating voltage, the above-mentioned cell parameters need to be optimized.

Highly Efficient Top-Emitting Electrophosphorescent Organic Light-Emitting Devices

  • Lu, Min-Hao M.;Weaver, Michael S.;Zhou, Theodore X.;Rothman, Mark;Kwong, Raymond C.;Hack, Mike;Brown, Julie J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.90-93
    • /
    • 2002
  • We present both a theoretical analysis and experimental data to show that electrophosphorescent top-emitting organic light emitting-devices (TOLEDs) with a reflective anode and a transparent cathode can be more efficient than the equivalent state-of-the-art bottom-emitting electrophosphorescent OLEDs (PHOLEDs$^{TM}$). The lifetime of devices with transparent cathodes are shown to approach that of the corresponding bottom-emitting devices.

  • PDF

Atomic Layer Deposition for Display Applications

  • Park, Jin-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.76.1-76.1
    • /
    • 2013
  • Atomic Layer Deposition (ALD) has remarkably developed in semiconductor and nano-structure applications since early 1990. Now, the advantages of ALD process are well-known as controlling atomic-level-thickness, manipulating atomic-level-composition control, and depositing impurity-free films uniformly. These unique properties may accelerate ALD related industries and applications in various functional thin film markets. On the other hand, one of big markets, Display industry, just starts to look at the potential to adopt ALD functional films in emerging display applications, such as transparent and flexible displays. Unlike conventional ALD process strategies (good quality films and stable precursors at high deposition processes), recently major display industries have suggested the following requirements: large area equipment, reasonable throughput, low temperature process, and cost-effective functional precursors. In this talk, it will be mentioned some demands of display industries for applying ALD processes and/or functional films, in terms of emerging display technologies. In fact, the AMOLED (active matrix organic light emitting diode) Television markets are just starting at early 2013. There are a few possibilities and needs to be developing for AMOLED, Flexible and transparent Display markets. Moreover, some basic results will be shown to specify ALD display applications, including transparent conduction oxide, oxide semiconductor, passivation and barrier films.

  • PDF

Challenge to Future Displays: Transparent AM-OLED driven by PEALD grown ZnO TFT

  • Ko Park, Sang-Hee;Hwang, Chi-Sun;Byun, Chun-Won;Ryu, Min-Ki;Lee, Jeong-Ik;Chu, Hye-Yong;Cho, Kyoung-Ik;Chae, Jang-Youl;Han, Se-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1249-1252
    • /
    • 2007
  • We have fabricated 3.5” transparent AM-OLED panel driven by PEALD grown ZnO TFT. The performance of ZnO thin film transistor was improved by adapting top gate structure, protection layer for ZnO from photolithography process, optimizing temperature and plasma power of ZnO growth process. The ZnO-TFT has a mobility of $8.9cm^2/V.s$, a subthreshold swing of 0.95V, and an on/off ratio of $10^7$.

  • PDF

Top-emission Electroluminescent Devices based on Ga-doped ZnO Electrodes (Ga-doped ZnO 투명전극을 적용한 교류무기전계발광소자 특성 연구)

  • Lee, Wun Ho;Jang, Won Tae;Kim, Jong Su;Lee, Sang Nam
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.44-48
    • /
    • 2017
  • We explain optical and electrical properties of top and bottom-emission structured alternating-current powder electroluminescent devices (ACPELDs) with Ga-doped ZnO(GZO) transparent electrode. The top-emission ACPELDs were layered as the metal electrode/dielectric layer/emission layer/top transparent electrode and the bottom-emission ACPELDs were structured as the bottom transparent electrode/emission layer/dielectric layer/metal electrode. The yellow-emitting ZnS:Mn, Cu phosphor and the barium titanate dielectric layers were layered through the screen printing method. The GZO transparent electrode was deposited by the sputtering, its sheet resistivity is $275{\Omega}/{\Box}$. The transparency at the yellow EL peak was 98 % for GZO. Regardless of EL structures, EL spectra of ACPELDs were exponentially increased with increasing voltages and they were linearly increased with increasing frequencies. It suggests that the EL mechanism was attributed to the impact ionization by charges injected from the interface between emitting phosphor layer and the transparent electrode. The top-emission structure obtained higher EL intensity than the bottom-structure. In addition, charge densities for sinusoidal applied voltages were measured through Sawyer-Tower method.

  • PDF

Novel electrode architecture for transparent organic thin-film transistors

  • Chen, Fang-Chung;Chen, Tung-Hsien;Lin, Yung-Sheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.194-197
    • /
    • 2006
  • One novel electrode-architecture has been adapted to fabricate transparent OTFTs. The device has more than 70% transmittance, yet reminds high performance. Furthermore, we also use transfer line method to prove that the device performance enhancement indeed contributes from the reduction of the contact resistances. It is anticipated that the transparent OTFTs would be very suitable to be the driving circuits for liquid crystal displays (LCDs).

  • PDF

Suggestion of Multi-Electrode Type Electronic Paper Film to Can be Used as a Transparent Display (투명 디스플레이로써 활용 가능한 다수전극형 전자종이 필름 제안)

  • Lee, Sang-il;Hong, Youn-Chan;Kim, Young-cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • A multiple-electrode-type electronic paper film can implement a single color and control the transparency, as it has multiple electrodes in one cell. Therefore, it can be used as a transparent display. In this paper, we explain the structure and driving method of a transparent electronic paper display, and then propose a control method of transmittance. Subsequently, we verify the theory by measuring the transmittance via experiment. Thus, by changing the manner of applying the voltage to three lower electrodes and one upper electrode, transmittance in eight cases could be realized. It was confirmed that the transmittance derived from the experiment could be controlled from a minimum of 6.75% to a maximum of 71.18%.