• Title/Summary/Keyword: Transparent conducting oxide(TCO)

Search Result 142, Processing Time 0.032 seconds

Direct Growth of TiO2-Nanotubes on Ti-Mesh Substrate for Photoanode Application to Dye-sensitized Solar Cell

  • Park, Min-Woo;Lee, Dong-Hoon;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.14-19
    • /
    • 2010
  • Partial anodic oxidation of Ti-mesh with a wire diameter of ~200[${\mu}m$] produces self-aligned $TiO_2$ nanotube arrays (~50[${\mu}m$] in length) on Ti-mesh substrate. The electrolyte used for anodic oxidation was an ethylene glycol solution with an addition of 1.5 vol. % $H_2O$ and 0.2 wt. % $NH_4F$. A dye-sensitized solar cell utilizing the photoanode structure of $TiO_2$-nanotube/Ti-mesh was fabricated without a transparent conducting oxide (TCO) layer, in which Ti-mesh replaced the role of TCO. The 1.93[%] photoconversion efficiency was low, which can be attributed to both insufficient dye molecules attachment and limited electrolyte flow to dye molecules. The optimized nanotube diameter and length as well as the $TiCl_4$ treatment can improve cell performance.

Synthesis of direct-patternable ZnO film incorporating Pt Nanoparticles

  • Choi, Yong-June;Park, Hyeong-Ho;Reddy, A.Sivasankar;Park, Hyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.369-369
    • /
    • 2007
  • ZnO film has been investigated during several decades because it has excellent optical property like a transmittance among the range of visible light for using transparent conducting oxide (TCO) films. But ZnO film has not enough conductivity for applying to TCO devices. Therefore we synthesized platinum nanoparticles and they incorporated into ZnO due to improve the electrical property of ZnO film by sol-gel synthesis method. Also, we fabricated photosensitive ZnO thin film containing Pt nanoparticles by sol-gel process and spin-coating for using photochemical solution deposition. Photosensitive ZnO film could carry out the direct-pattern which allow the etching process to be convenient. The optical and electrical properties of ZnO film with or without various atomic percent of Pt nanoparticles annealed at various temperatures were investigated by using UV-Vis spectroscopy and 4-point probe method, respectively. We characterized the ZnO thin film containing Pt nanoparticles using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.

  • PDF

Effect of Plasma Enhancement on the Al-doped ZnO Thin Film Synthesis by MOCVD (유기금속화학기상증착법에 의한 ZnO:Al 필름 합성에서 플라즈마 인가 효과)

  • Seomoon, Kyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • Al-doped ZnO (AZO) thin films were synthesized on Si(100) wafers via plasma enhanced metal organic chemical vapor deposition (PE-MOCVD) method using diethyl zinc (DEZ) and N-methylpyrrolidine alane (MPA) as precursors. Effects of Al/Zn mixing ratio, plasma power on the surface morphology, crystal structure, and electrical property were investigated with SEM, XRD and 4-point probe measurement respectively. Growth rate of the film decreased slightly with increasing the Al/Zn mixing ratio, however electrical property was enhanced and resistivity of the film decreased greatly about 2 orders from $9.5{\times}10^{-1}$ to $8.0{\times}10^{-3}{\Omega}cm$ when the Al/Zn mixing ratio varied from 0 to 9 mol%. XRD analysis showed that the grain size increased with increasing the Al/Zn mixing ratio. Growth rate and electrical property were enhanced in a mild plasma condition. Resistivity of AZO film decreased down to $7.0{\times}10^{-4}{\Omega}cm$ at an indirect plasma of 100 W condition which was enough value to use for the transparent conducting oxide (TCO) material.

Structural and Electrical Properties of Fluorine-doped Zinc Tin Oxide Thin Films Prepared by Radio-Frequency Magnetron Sputtering

  • Pandey, Rina;Cho, Se Hee;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.335-335
    • /
    • 2014
  • Over the past several years, transparent conducting oxides have been extensively studied in order to replace indium tin oxide (ITO). Here we report on fluorine doped zinc tin oxide (FZTO) films deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. Annealing temperature affects the structural, electrical and optical properties of FZTO thin films. All the as-deposited FZTO films grown at room temperature are found to be amorphous because of the immiscibility of SnO2 and ZnO. Even after the as-deposited FZTO films were annealed from $300{\sim}500^{\circ}C$, there were no significant changes. However, when the sample is annealed temperature up to $600^{\circ}C$, two distinct diffraction peaks appear in XRD spectra at $2{\Theta}=34.0^{\circ}$ and $52.02^{\circ}$, respectively, which correspond to the (101) and (211) planes of rutile phase SnO2. FZTO thin film annealed at $600^{\circ}C$ resulted in decrease of resistivity $5.47{\times}10^{-3}{\Omega}cm$, carrier concentration ~1019 cm-3, mobility~20 cm2 V-1s-1 and increase of optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures and well explained by Burstein-Moss effect. Change of work function with the annealing temperature was obtained by ultraviolet photoemission spectroscopy. The increase of annealing temperature leads to increase of work function from ${\phi}=3.80eV$ (as-deposited FZTO) to ${\phi}=4.10eV$ ($600^{\circ}C$ annealed FZTO) which are quite smaller than 4.62 eV for Al-ZnO and 4.74 eV for SnO2. Through X-ray photoelectron spectroscopy, incorporation of F atoms was found at around the binding energy of 684.28 eV in the as-deposited and annealed FZTO up to 400oC, but can't be observed in the annealed FZTO at 500oC. This result indicates that F atoms in FZTO films are loosely bound or probably located in the interstitial sites instead of substitutional sites and thus easily diffused into the vacuum from the films by thermal annealing. The optical transmittance of FZTO films was higher than 80% in all specimens and 2-3% higher than ZTO films. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.

  • PDF

Effect of MoSe2 on Contact Resistance of ZnO/Mo Junction in Cu(In,Ga)Se2 Thin Film Solar Module (MoSe2가 Cu(In,Ga)Se2 박막 태양전지 모듈의 ZnO/Mo 접합의 접촉 저항에 미치는 영향)

  • Cho, Sung Wook;Kim, A Hyun;Lee, Gyeong A;Jeon, Chan Wook
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.102-106
    • /
    • 2020
  • In this paper, the effect of MoSe2 on the contact resistance (RC) of the transparent conducting oxide (TCO) and Mo junction in the scribed P2 region of the Cu(In,Ga)Se2 (CIGS) solar module was analyzed. The CIGS/Mo junction becomes ohmic-contact by MoSe2, so the formation of the MoSe2 layer is essential. However, the CIGS solar module has a TCO/MoSe2/Mo junction in the P2 region due to structural differences from the cell. The contact resistance (RC) of the P2 region was calculated using the transmission line method, and MoSe2 was confirmed to increase RC of the TCO/Mo junction. B doped ZnO (BZO) was used as TCO, and when BZO/MoSe2 junction was formed, conduction band offset (CBO) of 0.6 eV was generated due to the difference in their electron affinities. It is expected that this CBO acts as a carrier transport barrier that disturbs the flow of current, resulting in increased RC. In order to reduce the RC caused by CBO, MoSe2 must be made thin in a CIGS solar module.

근접승화법(CSS)을 통한 CdTe박막 형성시 용액성장법(CBD)으로 성장된 CdS박막의 특성 변화

  • Cheon, Seung-Ju;Jeong, Yeong-Hun;Kim, Ji-Hyeon;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.70.3-70.3
    • /
    • 2010
  • CBD 방법은 저비용으로 양질의 CdS 박막을 얻을 수 있는 증착 방법으로, 고효율의 CdS/CdTe 태양전지를 얻기에도 적당하다. 투명전도 산화막(Transparent Conducting Oxide - TCO)이 입혀진 유리 기판 위에 CBD 방식으로 형성된 CdS 박막은 추후 CdTe 박막형성을 위해 근접승화법(Close Spaced Sublimation - CSS) 장치에 기판으로 사용된다. 또한 추후 열처리공정을 겪게 되는데, 이때 고온 상태에 높여지기 때문에 CdS 박막의 물성에 변화를 나타나게 된다. 이를 XRD, Raman spectrometer, SEM, EDS, 등의 분석 장치를 이용하여 특성 변화를 분석 하고자 한다.

  • PDF

Effect of Co-doping in Indium-Zinc-Tin Oxide based transparent conducting oxides sputtering target

  • Seo, Han;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Won, Ju-Yeon;Nam, Tae-Bang;Ju, Byeong-Gwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • ITO에 사용되는 주된 재료인 인듐의 bixbyite 구조는 TCOs의 전기적 특성에서 매우 중요한 것으로 알려져 있다. 때문에 인듐의 Bixbyite구조를 유지하면서 인듐의 사용량을 줄이기 위해 최적의 Solubility limit에 관해 연구하였다. 이를 위해 In2O3-ZnO-SnO2의 삼성분계 기본 조성에 두가지 물질을 추가로 첨가하여 첨가량에 따른 Solubility limit을 연구하였다. Solubility limit의 측정을 위해 X-ray Diffractometer(XRD)를 사용하였으며, 첨가 원소의 양이 증가할수록 TCOs target의 Latice parameter값은 작아졌다, SEM을 통한 미세구조의 관찰로 원소첨가에 따른 샘플의 소결에너지 변화를 분석할 수 있었다. 제작된 시편의 정성분석 및 Chemical binding Energy를 측정하기 위해 X-ray Photo Spectroscopy (XPS)를 이용하였으며, 전기적인 특성 측정을위해 4-Point prove mesurement 방법을 사용하였다.

  • PDF

Electrical and Optical Properties of $SnO_2$ : F Thin Films by Pyrosol Method (Pyrosol 법에 의한 $SnO_2$ : F 박막의 전기적 광학적 특성)

  • Yoon, Kyung-Hoon;Song, Jin-Soo;Kang, Gi-Hoan
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.187-190
    • /
    • 1990
  • A new technique is described for developing low-cost $SnO_2$ : F thin films as TCO (Transparent Conducting Oxide) substrate of a-Si solar cells. A novel Pyrosol equipment has been developed, and $SnO_2$ : F thin films have been deposited under the condition of varing dopant concentration, temperature and composition rate of solution. Futhermore, electrical and optical properties of thin films have been measured, and exhibit resistivity of $4.3{\times}10^{-4}{\Omega}$ cm and transmittance of 80% which is almost at the same level as those of $SnO_2$ : F thin films by CVD.

  • PDF

New Transparent Conducting B-doped ZnO Films by Liquid Source Misted Chemical Deposition Method (LSMCD 장비를 이용 Boron 도핑 ZnO 박막제조 및 특성평가)

  • Kim, Gil-Ho;Woo, Seong-Ihl;Bang, Jung-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.307-308
    • /
    • 2008
  • Zinc oxide is a direct band gap wurtzite-type semiconductor with band gap energy of 3.37eV at room temperature. the n-type doped ZnO oxides, B doped ZnO (BZO) is widely studied in TCOs materials as it shows good electrical, optical, and luminescent properties. we focused on the fabrication of B doped ZnO films with glass substrate using the LSMCD at low temperature. And Novel boron-doped ZnO thin films were deposited and characterized from the structural, optical, electrical point of view. The structure, morphology, and optical properties of the films were studied as a function of by employing the XRD, SEM, Hall system and micro Raman system.

  • PDF

Properties of Indium Tin Oxide Multilayer Fabricated by Glancing Angle Deposition Method

  • Oh, Gyujin;Lee, Kyoung Su;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.367-367
    • /
    • 2013
  • Commercial applications of indium tin oxide (ITO) can be separated into two useful areas. As it is perceived to bear electrical properties and optical transparency at once, its chance to apply to promising fields, usually for an optical device, gets greater in the passing time. ITO is one of the transparent conducting oxides (TCO), and required to carry the relative resistance less than $10^{-3}{\Omega}$/cm and transmittances over 80 % in the visible wavelength of light. Because ITO has considerable refractive index, there exist applications for anti-reflection coatings. Anti-reflection properties require gradual change in refractive index from films to air. Such changes are obtained from film density or nano-clustered fractional void. Glancing angle deposition (GLAD) method is a well known process for adjusting nanostructure of the films. From its shadowing effects, GLAD helps to deposit well-controlled porous films effectively. In this study, we are comparing the reference sample to samples coated with controlled ITO multilayer accumulated by an e-beam evaporation system. At first, the single ITO layer samples are prepared to decide refractive index with ellipsometry. Afterwards, ITO multilayer samples are fabricated and fitted by multilayer ellipsometric model based on single layer data. The structural properties were measured by using atomic force microscopy (AFM), and by scanning X-ray diffraction (XRD) measurements. The ellipsometry was used to determine refractive indices and extinction coefficient. The optical transmittance of the film was investigated by using an ultraviolet-visible (UV-Vis) spectrophotometer.

  • PDF