• Title/Summary/Keyword: Transparent cell

Search Result 336, Processing Time 0.028 seconds

The User Identification System using the ubiFloor (유비플로어를 이용한 사용자 인증 시스템)

  • Lee Seunghun;Yun Jaeseok;Ryu Jeha;Woo Woontack
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.4
    • /
    • pp.258-267
    • /
    • 2005
  • We propose the ubiFloor system to track and recognize users in ubiquitous computing environments such as ubiHome. Conventional user identification systems require users to carry tag sensors or use camera-based sensors to be very susceptible to environmental noise. Though floor-type systems may relieve these problems, high cost of load cell and DAQ boards makes the systems expensive. We propose the transparent user identification system, ubiFloor, exploiting user's walking pattern to recognize the user with a set of simple ON/OFF switch sensors. The experimental results show that the proposed system can recognize the 10 enrolled users at the correct recognition rate of $90\%$ without users' awareness of the system.

Fabrication of ITO Thin Film by Sol-Gel Method (Sol-Gel 법을 이용한 ITO박막의 제조)

  • Kim Gie-Hong;Lee Jae-Ho;Kim Young-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.11-14
    • /
    • 2000
  • Transparent conducting ITO thin films have been studied and developed for the solar cell substrate or LCD substrate. ITO thin film has been mostly fabricated by high cost sputtering method. In this research, sol-gel method is applied to fabricate ITO thin film at lower cost. The research is focused on the establishment of process condition and development of precursor. Organic sol was made of indium tri-isopropoxide dissolved in ethylene glycol monoethyl ether. The hydrolysis was controled by addition of acetyl acetone. Tin(IV) chloride was added as dopant. Inorganic sol was made of indium acetate dissolve din normal propanol. Spin coating technique was applied to coat ITO on borosilicate glass. The resistivity of ITO thin film was approximately $0.01\Omega{\cdot}cm$ and the transmittance is higher than $90\%$ in a visible range.

Development of low cost and high efficiency silicon thin-film and a-Si:H/c-Si hetero-junction solar cells using low temperature silicon thin-films (고품질 실리콘 박막을 이용한 저가 고효율 실리콘 박막 및 a-Si:H/c-Si 이종접합 태양전지 개발)

  • Lee, Jeong-Chul;Lim, Chung-Hyun;Ahn, Sae-Jin;Yun, Jae-Ho;Kim, Seok-Ki;Kim, Dong-Seop;Yang, Sumi;Kang, Hee-Bok;Lee, Bo-young;Yi, Junsij;Son, Jinsoo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.113-116
    • /
    • 2005
  • In this paper, silicon thin-film solar cells(Si- TFSC) and a-Si/c-Si heterojunction solar cells(HJ-cell) are investigated. The Si-TFSC was prepared on glass substrate by depositing $1-3{\mu}m$ thin-film silicons by glow discharge method. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells on textured ZnO:A1 TCO (transparent conducting oxide) showed improved Jsc in top and bottom cells than that on $SnO_2:F$ TCO. This enhancement of jsc resulted from improved light trapping effect by front textured ZnO:A1. The a-Si/c-Si HJ-cells with simple structure without high efficiency features are suffering from low Voc and Jsc. The improvement of front nip and back interface properties by adopting high quality silicon-films at low temperature should be done both for increasing device performances and production cost.

  • PDF

Effect of Interface Reaction between ZnO:Al and Amorphous Silicon on Silicon Heterojunction Solar Cells (실리콘 이종 접합 태양 전지 특성에 대한 ZnO:Al과 비정질 실리콘 계면 반응의 영향)

  • Kang, Min-Gu;Tark, Sung-Ju;Lee, Jong-Han;Kim, Chan-Seok;Jung, Dae-Young;Lee, Jung-Chul;Yoon, Kyung-Hoon;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.120-124
    • /
    • 2011
  • Silicon heterojunction solar cells have been studied by many research groups. In this work, silicon heterojunction solar cells having a simple structure of Ag/ZnO:Al/n type a-Si:H/p type c-Si/Al were fabricated. Samples were fabricated to investigate the effect of transparent conductive oxide growth conditions on the interface between ZnO:Al layer and a-Si:H layer. One sample was deposited by ZnO:Al at low working pressure. The other sample was deposited by ZnO:Al at alternating high working pressure and low working pressure. Electrical properties and chemical properties were investigated by light I-V characteristics and AES method, respectively. The light I-V characteristics showed better efficiency on sample deposited by ZnO:Al by alternating high working pressure and low working pressure. Atomic concentrations and relative oxidation states of Si, O, and Zn were analyzed by AES method. For poor efficiency samples, Si was diffused into ZnO:Al layer and O was diffused at the interface of ZnO:Al and Si. Differentiated O KLL spectra, Zn LMM spectra, and Si KLL spectra were used for interface reaction and oxidation state. According to AES spectra, sample deposited by high working pressure was effective at reducing the interface reaction and the Si diffusion. Consequently, the efficiency was improved by suppressing the SiOx formation at the interface.

Power Prediction of P-Type Si Bifacial PV Module Using View Factor for the Application to Microgrid Network (View Factor를 고려한 마이크로그리드 적용용 고효율 P-Type Si 양면형 태양광 모듈의 출력량 예측)

  • Choi, Jin Ho;Kim, David Kwangsoon;Cha, Hae Lim;Kim, Gyu Gwang;Bhang, Byeong Gwan;Park, So Young;Ahn, Hyung Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • In this study, 20.8% of a p-type Si bifacial solar cell was used to develop a photovoltaic (PV) module to obtain the maximum power under a limited installation area. The transparent back sheet material was replaced during fabrication with a white one, which is opaque in commercial products. This is very beneficial for the generation of more electricity, owing to the additional power generation via absorption of light from the rear side. A new model is suggested herein to predict the power of the bifacial PV module by considering the backside reflections from the roof and/or environment. This model considers not only the frontside reflection, but also the nonuniformity of the backside light sources. Theoretical predictions were compared to experimental data to prove the validity of this model, the error range for which ranged from 0.32% to 8.49%. Especially, under $700W/m^2$, the error rate was as low as 2.25%. This work could provide theoretical and experimental bases for application to a distributed and microgrid network.

Synthesis of Nanoporous F:SnO2 Materials and its Photovoltaic Characteristic (나노 다공질 FTO 제작 및 광전변환특성 고찰)

  • Han, Deok-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • In this work, a new type of DSCs based on nanoporous FTO structure is being developed for research aimed at low-cost high-efficiency solar cell application. The nanoporous FTO materials have been prepared through the sol-gel combustion method followed by thermal treatment at $450{\sim}850[^{\circ}C]$. The properties of the nanoporous FTO materials were investigated by IR spectra, BET and TEM analyses, and the photovoltaic performance of the prepared DSCs were examined. It can be seen from the result that the nanoporous FTO exhibited good transparent conductive properties, well suited for DSCs application.

Sputtered Al-Doped ZnO Layers for Cu2ZnSnS4 Thin Film Solar Cells

  • Lee, Kee Doo;Oh, Lee Seul;Seo, Se-Won;Kim, Dong Hwan;Kim, Jin Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.688-688
    • /
    • 2013
  • Al-doped ZnO (AZO) thin films have attracted a lot of attention as a cheap transparent conducting oxide (TCO) material that can replace the expensive Sn-doped In2O3. In particular, AZO thin films are widely used as a window layer of chalcogenide-based thin film solar cells such as Cu(In,Ga)Se2 and Cu2ZnSnS4 (CZTS). Mostly important requirements for the window layer material of the thin film solar cells are the high transparency and the low sheet resistance, because they influence the light absorption by the activelayer and the electron collection from the active layer, respectively. In this study, we prepared the AZO thin films by RF magnetron sputtering using a ZnO/Al2O3 (98:2wt%) ceramic target, and the effect of the sputtering condition such as the working pressure, RF power, and the working distance on the optical, electrical, and crystallographic properties of the AZO thin films was investigated. The AZO thin films with optimized properties were used as a window layer of CZTS thin film solar cells. The CZTS active layers were prepared by the electrochemical deposition and the subsequent sulfurization process, which is also one of the cost-effective synthetic approaches. In addition, the solar cell properties of the CZTS thin film solar cells, such as the photocurrent density-voltage (J-V) characteristics and the external quantum efficiency (EQE) were investigated.

  • PDF

Characterization of a Tacky Poly(3-Hydroxyalkanoate) Produced by Pseudomonas chlororaphis HS21 from Palm Kernel Oil

  • YUN, HYE SUN;DO YOUNG KIM;CHUNG WOOK CHUNG;HYUNG WOO KIM;YOUNG KI YANG;YOUNG HA RHEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.64-69
    • /
    • 2003
  • Pseudomonas chlororaphis HS21 was isolated from a soil sample and found to produce medium-chain-length polyhydroxyalkanoates (MCL-PHAs) using palm kernel oil (PKO) as the sole carbon source. Up to 3.3 g/1 dry cell weight containing $45\%$ MCL-PHA was produced, when the strain was grown for 21 h in a jar fermentor culture containing 5 g/1 PKO. The polymer produced from PKO consisted of unsaturated monomers of $7.3\%$ 3-hydroxy-5-cis-tetradecenoate and $2.3\%$ 3-hydroxy-5,8,-cis, cis-tetradecadienoate as well as saturated even-carbon number monomers ranging from $C_6\;to\;C_14$, as determined by GC and El GC/MS The PHA was a transparent, sticky material at room temperature. A differential scanning calorimetric analysis revealed that the polymer was amorphous with a $-44^{\circ}C$ glass transition temperature. The number average molecular weight and polydispersity index of the PHA were 83,000 and 1.53, respectively. Although the PHA was practically biodegradable, its degradability was lower than that of poly(3-hydroxyoctanoate) based on a comp:trison of the clear zones formed by growing PHA depolymerase-producing bacteria on an agar plate containing the respective polymers.

Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity

  • Kim, Byung-Hyuk;Kim, Dong-Ho;Choi, Jung-Woon;Kang, Zion;Cho, Dae-Hyun;Kim, Ji-Young;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1547-1554
    • /
    • 2015
  • The potential of microalgae biofuel has not been realized because of the low productivity and high costs associated with the current cultivation systems. In this study, a new low-cost and transparent attachment material was tested for cultivation of a filamentous algal strain, Stigeoclonium sp., isolated from wastewater. Initially, the different materials tested for Stigeoclonium cultivation in untreated wastewater were nylon mesh, polyethylene mesh, polypropylene bundle (PB), polycarbonate plate, and viscose rayon. Among the materials tested, PB led to a firm attachment, high biomass (53.22 g/m2, dry cell weight), and total lipid yield (5.8 g/m2) with no perceivable change in FAME profile. The Stigeoclonium-dominated biofilm consisted of bacteria and extracellular polysaccharide, which helped in biofilm formation and for effective wastewater treatment (viz., removal efficiency of total nitrogen and total phosphorus corresponded to ~38% and ~90%, respectively). PB also demonstrated high yields under multilayered cultivation in a single reactor treating wastewater. Hence, this system has several advantages over traditional suspended and attached systems, with possibility of increasing areal productivity three times using Stigeoclonium sp. Therefore, multilayered attached growth algal cultivation systems seem to be the future cultivation model for large-scale biodiesel production and wastewater treatment.

A Study of the Architectural Characteristic Depending upon the Module in the BIPV System (BIPV 시스템에서의 모듈 종류에 따른 건축적 특성 연구 - 채광형 시스템을 중심으로 -)

  • Lee, Eung-Jik;Lee, Chung-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.196-202
    • /
    • 2008
  • Effective climate protection is a most important tasks of our time. The BIPV is one of the most interesting and promisingly possibilities of an active use of solar energy at the building. In this study it was analyzed by the case study the function of the requirement of the BIPV-module as building material and this architectural characteristic according to the kind of the module. Therefore the goal of this study is to get securing the application information of BIPV as windowpane. BIPV modules are manufactured in the form of G/G. In the case of the crystal type the Transparent and the light Transmission is to be adjusted by the spacer attitude of the cell. Although this type could not be optimal for light effect of indoors because of the inequality of shade, the moving shade play makes a dramatic Roomimage by the run of sun. The application of this type would be for canopy, window or roof in the corridor or resounds. With amorphous the type it is to be manufactured simply largely laminar, and thus that will shorten building process. There is a relatively good economy to use and to the window system easily. After the production technology is easy the transparency of the modules to adjust, and the module shows to a high degree constant characteristics of light permeability and transparency. Without mottle of module shade is good the use for the window or roof glazing of office, library, classroom, etc. to adapt. The BIPV modules took generally speaking a function as building material to the daylight use, shading, isolation and also to the sight. That means that BIPV modules have as multifunctional system to sustainable architecture good successes and they are at the same time as Design element for architecture effectively.

  • PDF