• 제목/요약/키워드: Transparent Conductive oxide

검색결과 292건 처리시간 0.026초

The Properties of Boron-doped Zinc Oxide Film Deposited according to Oxygen Flow Rate

  • Kim, Dong-Hae;Son, Chan-Hee;Yun, Myoung-Soo;Lee, Jin-Young;Jo, Tae-Hoon;Seo, Il-Won;Jo, I-Hyun;Roh, Jun-Hyung;Choi, Eun-Ha;Uhm, Han-Sup;Kwon, Gi-Chung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.358-358
    • /
    • 2012
  • The application of BZO (Boron-doped Zinc Oxide) films use as the TCO(Transparent Conductive Oxide) material for display and solar cell industries, where the conductivity of the BZO films plays a critical role for improvement of cell performance. Thin BZO films are deposited on glass substrates by using RF sputter system. Then charging flow rates of O2 gas from zero to 10 sccm, thereby controlling the impurity concentration of BZO. BZO deposited on soda lime glass and RF power was 300 W, frequency was 13.56 MHz, and working pressure was $5.0{\times}10-6$ Torr. The Substrate and glass between distance 200 mm. We measured resistivity, conductivity, mobility by hall measurement system. Optical properties measured by photo voltaic device analysis system. We measured surface build according to oxygen flow rate from XPS (X-ray Photoelectron Spectroscopy) system. The profile of the energy distribution of the electrons emitted from BZO films by the Auger neutralization is measured and rescaled so that Auger self-convolution arises, revealing the detail structure of the valence band. It may be observed coefficient ${\gamma}$ of the secondary electron emission from BZO by using ${\gamma}$-FIB (Gamma-Focused Ion Beam) system. We observed the change in electrical conductivity by correlation of the valence band structure. Therefore one of the key issues in BZO films may be the valence band that detail structure dominates performance of solar cell devices. Demonstrating the secondary electron emission by the Auger neutralization of ions is useful for the determination of the characteristics of BZO films for solar cell and display developments.

  • PDF

DC 마그네트론 스퍼터링을 이용한 IZO 박막의 제조와 특성 연구 (Preparation and Characterization of IZO Thin Films grown by DC Magnetron Sputtering)

  • 박창하;이학준;김현범;김동호;이건환
    • 한국표면공학회지
    • /
    • 제38권5호
    • /
    • pp.188-192
    • /
    • 2005
  • Indium zinc oxide (IZO) thin films were deposited on glass substrate by dc magnetron sputtering. The effects of oxygen flow rate and deposition temperature on electrical and optical properties of the films were investigated. With addition of small amount of oxygen gas, the characteristic properties of amorphous IZO films were improved and the specific resistivity was about $4.8{\times}10^{-4}\Omega{\cdot}cm$. Change of structural properties according to the deposition temperature was observed with XRD, SEM, and AFM. Films deposited above $300^{\circ}C$ were found to be polycrystalline. Surface roughness of the films was increased due to the formation of grains on the surface. Electrical conductivity became deteriorated for polycrystalline IZO films. Consequently, high quality IZO films could be prepared by do sputtering with $O_{2}/Ar{\simeq}0.03$ and deposition temperature in range of $150\~200^{\circ}C$; a specific resistivity of $3.4{\times}10^{-4}{\Omega}{\cdot}cm$, an optical transmission over $90\%$ at wavelength of 550 nm, and a rms value of surface roughness about $3{\AA}$.

RF 마그네트론 스퍼터링법으로 상온 증착된 비정질 ITZO 산화물의 전기적 및 광학적 특성 (Electrical and Optical Properties of Amorphous ITZO Deposited at Room Temperature by RF Magnetron Sputtering)

  • 이기창;조광민;이준형;김정주;허영우
    • 한국표면공학회지
    • /
    • 제47권5호
    • /
    • pp.239-243
    • /
    • 2014
  • The electrical and optical properties of amorphous In-Tin-Zinc-Oxide(ITZO) deposited at room temperature using rf-magnetron sputtering were investigated. The amorphous ITZO thin films were obtained at the composition of In:Sn:Zn = 6:2:2, 4:3:3, and 2:4:4, but the ITZO (8:1:1) showed a crystalline phase of bixbyite structure of In2O3. The resistivity of ITZO could be controlled by oxygen pressure in the sputtering ambient. The resistivity of post-annealed ITZO thin films exhibited the dependence on the amount of Indium. Optical energy band gap and transmittance increased as the amount of indium in ITZO increased. For the device application with ITZO, the bottom-gated thin-film transistor using ITZO as a active channel layer was fabricated. It showed a threshold voltage of 1.42V and an on/off ratio of $5.63{\times}10^7$ operated with saturation field-effect mobility of $14.2cm^2/V{\cdot}s$.

비접촉 눈 깜박임 측정 안경형 디바이스를 이용한 실시간 스펠러의 구현 (Development of Online Speller using Non-contact Blink Detection Glasses)

  • 이정수;이홍지;이원규;임용규;박광석
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권6호
    • /
    • pp.283-290
    • /
    • 2015
  • We proposed blink based online speller for the locked-in syndrome (LIS) patients, paralyzed in nearly all voluntary muscles expect for the eyes, with a simple and easy-to-use eye blink detection glasses. Electrooculogram (EOG) is the golden standard method of eye movement or blink measurement with Ag/AgCl electrodes. However, this method has several drawbacks such as skin irritation and dehydration of conductive gel. To resolve the shortcomings, we used a blink detection system based on a transparent capacitively coupled electrode, which is conductive indium tin oxide (ITO) films. The films make it possible to measure eye blink without direct skin contact and obstruction of field of view. We finally developed user-friendly blink based online speller with the blink detection system. To classify voluntary and non-voluntary blink, we used the double blink for command of the speller. The online speller experiment result with six healthy subjects shows that mean accuracy is 98.96% and letter per minute (LPM) is 4.73, which are better result by comparison with conventional P300 or auditory brain-computer interface (BCI) paradigm. The result of the experiment demonstrates the possibility of applying the proposed system as a communication method for the LIS patients.

스마트윈도우 응용을 위한 FTO 기판 위에 증착된 VO2 박막의 광학적 특성 (Optical Properties of VO2 Thin Film Deposited on F:SnO2 Substrate for Smart Window Application)

  • 강소희;한승호;박승준;김형근;양우석
    • 한국재료학회지
    • /
    • 제23권4호
    • /
    • pp.215-218
    • /
    • 2013
  • Vanadium dioxide ($VO_2$) is an attractive material for smart window applications where the transmittance of light can be automatically modulated from a transparent state to an opaque state at the critical temperature of ${\sim}68^{\circ}C$. Meanwhile, F : $SnO_2$ (F-doped $SnO_2$, FTO) glass is a transparent conductive oxide material that is widely used in solar-energy-related applications because of its excellent optical and electrical properties. Relatively high transmittance and low emissivity have been obtained for FTO-coated glasses. Tunable transmittance corresponding to ambient temperature and low emissivity can be expected from $VO_2$ films deposited onto FTO glasses. In this study, FTO glasses were applied for the deposition of $VO_2$ thin films by pulsed DC magnetron sputtering. $VO_2$ thin films were also deposited on a Pyrex substrate for comparison. To decrease the phase transition temperature of $VO_2$, tungsten-doped $VO_2$ films were also deposited onto FTO glasses. The visible transmittance of $VO_2$/FTO was higher than that of $VO_2$/pyrex due to the increased crystallinity of the $VO_2$ thin film deposited on FTO and decreased interface reflection. Although the solar transmittance modulation of $VO_2$/FTO was lower than that of $VO_2$/pyrex, room temperature solar transmittance of $VO_2$/FTO was lower than that of $VO_2$/pyrex, which is advantageous for reflecting solar heat energy in summer.

p-형 Al/SnO2 투명 전도성 다층박막에 미치는 열처리의 영향 (Effect of annealing om p-type Al/SnO2 transparent conductive multilayer films)

  • 박근영;김성재;구본흔
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.27-28
    • /
    • 2014
  • 투명전극이란 전기 전도도를 갖는 동시에 가시광선 영역에서 빛을 투과하는 성질을 가지는 소재이다. 일반적으로 가시광선 영역(380nm~780nm)에서 80%이상의 광 투과도를 가지며, 비저항이 $10^{-3}{\Omega}{\cdot}cm$ 이하, optical band gap 이 3.3 eV 이상인 물질을 TCO(Transparent Conducting oxide)라고 한다. 현재까지 국내의 TCO 관련 연구는 터치패널, 디스플레이, 태양전지 등 광전자분야에서 가장 널리 사용되고 있는 ITO(Sn:In2O3)에 치중되어 있으며, 관련 연구도 거의 디스플레이 맞춤형 연구개발이 주류를 이루어왔다. ITO가 전기전도성이 우수하고 동시에 가시광선 영역에서의 투과율도 80%이상으로 전기적, 광학적 특성이 우수하다는 장점을 가지고 있으나, In의 희소성으로 인한 고가격, 유독성, 접착력 문제 때문에 이를 대체하기 위해 제조원가가 ITO에 비하여 월등히 저렴하고 내화학성과 내마모성이 우수하면서도, 가시광선 영역에서의 광투과율이 80%이상으로 좋다는 $SnO_2$에 관한 연구가 활발히 진행되어 왔다. 적절한 dopant를 첨가하여 $SnO_2$자체의 높은 광학적 투과도를 유지하면서 전기전도성을 더 높일수 있고, 투명전극이 가져야 할 고온 안정성을 가지고 있으며 비독성이고 수소 플라즈마에 대한 내성이 더 클 뿐만 아니라 저온에서 성장이 가능하다. $SnO_2$의 전기 전도도를 높이기 위한 Al, In, Ga, B와 같은 3족 원소가 $SnO_2$의 n형 dopant로 널리 사용되고 있다. 그 중 Al은 반응성이 커서 박막 증착 중에 산화되기 쉬운 반면, 전기적 특성 및 광학적 특성의 향상을 이룰 수 있다. 본 연구에서는 Rf Sputtering법을 사용하여 quartz기판 위에 다층박막 형태의 투명전도막을 제작한 후, 열처리를 수행, 이에 의한 다층박막 내 계면간 상호확산 현상을 이용하여 투명 전도막의 특성변화를 관찰하였다. 박막의 구조적 특성은 XRD장비를 사용하여 분석하였으며, 전기적, 광학적 특성은 각각 표면저항기, 홀 측정 장비, 그리고 UV-VIS-NI를 사용하여 확인하였다.

  • PDF

Depositon of Transparent Conductive Films by a DC arc Plasmatron

  • Penkov, O.V.;Plaksin, V. Yu.;Joa, S.B.;Kim, J.H.;LEE, H.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.480-480
    • /
    • 2010
  • In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1,500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photo-electron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Sheet resistance of 4 Ohms cm was achieved after the deposition and 30 min annealing in the hydrogen at $350^{\circ}C$. Elevation of the substrate temperature during the deposition process up to $350^{\circ}C$ leads to decreasing of the film's resistance due to rearrangement of the crystalline structure.

  • PDF

바인더 함량에 따른 염료감응 태양전지의 효율에 관한 연구 (A Study on the Efficiency of Dye Sensitized Solar Cell Based on the Volume of Binder Addition)

  • 기현철;정행윤;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.878-881
    • /
    • 2013
  • In this study, we have fabricated the dye sensitized solar cell (DSSC) composed by a transparent conductive oxide (TCO), a nanocrystalline semiconductor film usually $TiO_2$, a sensitizer adsorbed on the surface of the semiconductor, an electrolyte containing a redox mediator and a counter electrode. The $TiO_2$ nanopowder was prepared by sol-gel methode. The HCl (hydrochloric acid) and TBAOH (Tetrabutyl amonium hydroxide) was added for improving the catalyst and distributed properties of $TiO_2$ nanopowder. Ammonium hydroixde was added in order to control the morphology and size of $TiO_2$ nano crystal. A $TiO_2$ paste for working electrode was prepared with the addition of HPC (hydroxypropyl cellulos) used as a binder of which volume was controled as 1.3, 1.5, 1.7, and 2.0%. The measured I-V curves of assembled DSSC showed that the cell with 1.7% HPC binder had the best efficiency of 6.79%.

Characterization of AZO thin films grown on various substrates by using facing target sputtering system

  • 이창현;손선영;배강;이창규;김화민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.123-123
    • /
    • 2015
  • Al doped ZnO(AZO) films as a transparent conductive oxide (TCO) electrode were deposited on glass, polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) at room temperature by a conventional rf-magneton sputtering (CMS) and a facing target sputtering (FTS) using Al2O3 and ZnO targets. In order to investigation of AZO properties, the structural, surface morphology, electrical, and optical characteristics of AZO films were respectively analyzed. The resistivities of AZO films using FTS system were $6.50{\times}10-4{\Omega}{\cdot}cm$ on glass, $7.0{\times}10-4{\Omega}{\cdot}cm$ on PEN, and $7.4{\times}10-4{\Omega}{\cdot}cm$ on PET substrates, while the values of AZO films using CMS system were $7.6{\times}10-4{\Omega}{\cdot}cm$ on glass, $1.20{\times}10-3{\Omega}{\cdot}cm$ on PEN, and $1.58{\times}10-3{\Omega}{\cdot}cm$ on PET substrates. The AZO-films deposited by FTS system showed uniform surface compared to those of the films by CMS system. We thought that the films deposited by FTS system had low stress due to bombardment of high energetic particles during CMS process, resulted in enhanced electrical conductivity and crystalline quality by highly c-axis preferred orientation and closely packed nano-crystalline of AZO films using FTS system.

  • PDF

전자빔 증착법에 의한 티타늄 전극 구조 염료 태양전지 제작에 관한 연구 (A Study on the Fabrication of Dye-Sensitized Solar Cells Consisting of Ti Electrodes by Electron-beam Evaporation Method)

  • 김윤기;심충환;김현규;성열문;김동현;이해준;박정후;이호준
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.754-758
    • /
    • 2010
  • In general, Dye-sensitized Solar Cells(DSCs) consist of the nanocrystalline titanium dioxide($TiO_2$) layer which is fabricated on a transparent conductive oxide(TCO) layer such as $F/SnO_2$ glass, a dye adhered to the $TiO_2$, an electrolyte solution and platinum-coated TCO. Among these components, two TCO substrates are estimated to be about 60% of the total cost of the DSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, TCO-less DSCs consisting of titanium electrodes were investigated. The titanium electrode is deposited on top of the porous $TiO_2$ layer using electron-beam evaporation process. The porosity of the titanium electrode was found out by the SEM analysis and dye adhesion. As a result, when the thickness of the titanium electrode increased, the surface resistance decreased and the conversion efficiency increased relatively.