• Title/Summary/Keyword: Transparent Conducting Oxide

Search Result 344, Processing Time 0.019 seconds

A Basic Study on Separation of U and Nd From LiCl-KCl-UCl3-NdCl3 System (LiCl-KCl-UCl3-NdCl3 system에서 U 및 Nd 분리에 관한 기초연구)

  • Kim, Tack-Jin;Ahn, Do-Hee;Eun, Hee-Chul;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • In case of high contents of rare earths in the LiCl-KCl salt, it is not easy to recover U and TRU metals as a usable resource form from LiCl-KCl eutectic salts generated from the pyroprocessing of spent nuclear fuel. In this study, a conversion of $UCl_3$ into an oxide form using $K_2CO_3$ and an electrodeposition of $NdCl_3$ into a metal form in $LiCl-KCl-UCl_3-NdCl_3$ system were conducted to resolve the problem. Before conducting the conversion, experimental conditions for the conversion were determined by performing a thermodynamic equilibrium calculation. In this study, almost all of $UCl_3$ disappeared in the LiCl-KCl salt when the injection of $K_2CO_3$ reached theoretical equivalent for the conversion, and then $NdCl_3$ was effectively electrodeposited as a metal form using liquid zinc cathode. After that, the LiCl-KCl salt became transparent, and uranium oxides were precipitated to the bottom of the LiCl-KCl salt. These results will be utilized in designing a process to separate U and rare earths in LiCl-KCl salt.

Influence of Oxygen Flow Ratio on the Properties of In2O3 Thin Films Grown by RF Reactive Magnetron Sputtering (라디오파 반응성 마그네트론 스퍼터링으로 증착된 In2O3 박막의 특성에 산소 유량비의 변화가 미치는 효과)

  • Kwak, Jun-Ho;Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.224-229
    • /
    • 2010
  • Indium oxide $(In_2O_3)$ thin films have been prepared on glass substrate by using radio-frequency reactive magnetron sputtering with changing the oxygen flow ratio. The substrate temperature was kept at a fixed value of $400^{\circ}C$, and the sputtering gas and reactive gas were supplied with argon and oxygen, respectively. The oxygen partial flow ratio was varied by controlling the amount of oxygen with respect to the total mixed gases, 10%, 20%, 30%, 40%, and 50%. The optical, electrical, and structural properties of the deposited thin films were investigated by using ultraviolet-visible-near infrared spectrophotometer, Hall measurement, and X-ray diffractometer and scanning electron microscopy. The $In_2O_3$ thin film deposited at 20% of oxygen flow ratio showed an average transmittance of 86% in the wavelength range of 430~1,100 nm, an electrical resistivity of $1.1{\times}10^{-1}{\Omega}cm$. The results show that the transparent conducting films with optimum conditions can be achieved by controlling the oxygen flow ratio.

Low Resistance Indium-based Ohmic Contacts to N-face n-GaN for GaN-based Vertical Light Emitting Diodes (GaN계 수직형 발광 다이오드를 위한 N-face n-GaN의 인듐계 저저항 오믹접촉 연구)

  • Kang, Ki Man;Park, Min Joo;Kwak, Joon Seop;Kim, Hyun Soo;Kwon, Kwang Woo;Kim, Young Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.456-461
    • /
    • 2010
  • We investigated the In-based ohmic contacts on Nitrogen-face (N-face) n-type GaN, as well as Ga-face n-type GaN, for InGaN-based vertical Light Emitting Diodes (LEDs). For this purpose, we fabricated Circular Transfer Length Method (CTLM) patterns on the N-face n-GaN that were prepared by using a laser-lift off method, as well as on the Ga-face n-GaN that were prepared by using a dry etching method. Then, In/transparent conducting oxide (TCO) and In/TiW schemes were deposited on the CTLM in order for low resistance ohmic contacts to form. The In/TCO scheme on the Ga-face n-GaN showed high specific contact resistance, while the minimum specific contact resistance was only 3${\times}$10$^{-2}$ $\Omega$-cm$^{2}$ after annealing at 300${^{\circ}C}$, which can be attributed to the high sheet resistance of the TCO layer. In contrast, the In/TiW scheme on the Ga-face n-GaN produced low specific contact resistance of 2.1${\times}$10$^{5}$ $\Omega$-cm$^{2}$ after annealing at 500${^{\circ}C}$ for 1 min. In addition, the In/TiW scheme on the N-face n-GaN also resulted in a low specific contact resistance of 2.2${\times}$10$^{-4}$ $\Omega$-cm$^{2}$ after annealing at 300${^{\circ}C}$. These results suggest that both the Ga-face n-GaN and N-face n-GaN.

Improvement of Bleaching Performance of Photosensitive Electrochromic Device by the Additive of TEMPOL (TEMPOL 첨가제 적용에 의한 광감응형 전기변색 소자 탈색성능 향상)

  • Song, Seung Han;Park, Hee sung;Cho, Churl Hee;Hong, Sungjun;Han, Chi-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.209-217
    • /
    • 2022
  • We have developed photosensitive electrochromic smart windows that does not require any transparent conducting oxide (TCO) substrate. In our previous study, we demonstrated that a flexible film-type device made with a low temperature curing WO3 sol and TiO2 sol could show a reversible and rapid switching between colored and bleached state via incorporation of platinum catalysts on the surface of WO3 layer. However, when these devices were exposed to sunlight over 4 hour, it was confirmed that they did not return to fully bleached state in the darkened state due to their overcoloring process. In this study, we added 4-hydroxy-(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPOL) as an additive to the electrolyte of photosensitive electrochromic device to effectively prevent the undesired overcoloring process. The resulting device with TEMPOL indeed did not undergo excessive coloration and showed great reversibility even after being exposed to sunlight for over 4 hours. Various concentrations of TEMPOL were applied to compare changes in the visible transmittance and coloring/bleaching kinetics of devices. In terms of energetic point of view, we proposed a plausible mechanism of TEMPOL to prevent excessive coloration.