• 제목/요약/키워드: Transonic Compressor

검색결과 59건 처리시간 0.029초

효율 향상을 위한 축류 압축기 동익의 스윕, 린, 스큐각의 형상 최적화 (Shape Optimization of Swept, Leaned, and Skewed Blades in a Transonic Axial Compressor for Enhancing Rotor Efficiency)

  • 장춘만;;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.525-532
    • /
    • 2005
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using response surface method and three-dimensional Navier-Stokes analysis. Three design variables of blade sweep. lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor. the adiabatic efficiency is increased by reducing the tub comer and tip losses. Separation line due to the interference between a passage shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one.

  • PDF

3차원 천음속 원심압축기 디퓨저 성능연구 (Performance Analysis of Three-Dimensional Transonic Centrifugal Compressor Diffuser)

  • 김상덕;송동주
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.64-72
    • /
    • 1999
  • CSCM upwind flux difference splitting compressible Navier-Stokes method has been used to predict the transonic flows in a centrifugal compressor diffuser. The modified cyclic. TDMA and the mass flux boundary conditions were used as boundary conditions of the diffuser analysis. Broad flow separation on the suction surface near the hub and shroud was observed from the results of the mass flow rates 5.8, 6.0 and 6.2kg/s at 27000 rpm. The three-dimensional flow analysis predicted successfully that the static pressure increased and the total pressure decreased through the flow passage of the channel diffuser when compared to two-dimensional analysis due to the strong effect of the three-dimensional flow. The mass averaged loss coefficients and pressure coefficients were also studied.

  • PDF

3차원 천음속 원심압축기 디퓨저의 탈설계 성능에 관한 수치적 연구 (A Numerical Study on the Off-Design Performance of Three-Dimensional Transonic Centrifugal Compressor Diffusers)

  • 김상덕;송동주
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.134-140
    • /
    • 1999
  • A three-dimensional CSCM upwind flux difference splitting Navier-stokes code with two-equation turbulence models was developed to predict the transonic flows in centrifugal compressor diffuser. The k-$\epsilon$ model of Abe et al. performed well in predicting the pressure distribution in the shock wave/turbulent boundary-layer interaction. Three turbulence models predicted the similar distribution of static pressure through the diffuser and showed a good agreement with the experimental results. The secondary flows in the corner were predicted well by these turbulence models. The pressure increase before the throat of the diffuser vane is important for the overall pressure recovery. As the mass flow rate increased the blockage decreased at the throat. The pressure coefficient distribution through the diffuser depended on the throat blockage not on the rotational speed of the impeller.

  • PDF

축류압축기 회전차유동에 대한 난류모델의 성능평가 (Evaluation of Turbulence Models for A Compressor Rotor)

  • 이용갑;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.179-186
    • /
    • 1999
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67), and to evaluate the performances of k-$\epsilon$ and Baldwin-Lomax turbulence models. A finite volume method is used for spatial discretization. And, the equations are solved implicitly in time with the use of approximate factorization. Upwind difference scheme is used for inviscid terms, but viscous terms are centrally differenced. The flux-difference-splitting of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. And, the results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, we conclude that k-$\epsilon$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost same.

  • PDF

수치해석을 활용한 1단 천음속 압축기 내부 유동장 분석 (Numerical Investigation on Internal Flow Field of a Single-Stage Transonic Axial Compressor)

  • 송지한;황오식;박태춘;임병준;양수석;강영석
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.85-91
    • /
    • 2012
  • Numerical simulations on a single stage transonic compressor which is developed by Korea Aerospace Research Institute are carried out and their results are compared with experimental data for cross validations. Comparisons between experimental data and numerical simulation results show good agreements on a performance curve, static pressure and total pressure distributions. CFD results show that there is a clear interaction between tip leakage flow and normal shock in the rotor passage. Tip leakage flows are almost dissipated after the strong normal shock and it forms a strong recirculation near the blade tip. Also a large separation region grows on the suction surface just after the normal shock. As the pressure ratio and blade loading increase, the normal shock line moves upstream and it starts to deviate from the blade leading edge. Then the tip leakage flow does not overcome the strong adverse pressure gradient and flow blockage originated from the tip recirculation region. As a result, the tip leakage flow heads for the neighboring blade leading edge, which results in a compressor stall.

원심압축기의 링 그루브 효과에 관한 수치해석적 연구 (Numerical Investigation of Ring Groove Effect in a Centrifugal Compressor)

  • 박치용;최영석;이경용;윤준용
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.11-16
    • /
    • 2011
  • This paper presents a numerical study of casing treatments on a centrifugal compressor stage to improve stability and the surge margin. High efficiency, a high pressure ratio, and a wide operating range are required for a high performance centrifugal compressor. In the present study, a ring groove arrangement was applied to the transonic centrifugal compressor. According to the numerical analysis using a commercial code ANSYS-CFX, the unstable phenomena limiting the range of the centrifugal compressors were compared with and without a ring groove. Although the ring groove decreased the efficiency, but increased the operating range by suppressing a flow separation at the leading-edge of the impeller especially near shroud part. Newly designed ring groove arrangement improved the compressor performance and increased the operating range of the compressor.

Application of PIV in a Transonic Centrifugal Impeller

  • Hayami Hiroshi;Hojo Masahiro;Aramaki Shinichiro
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.1-5
    • /
    • 2001
  • A particle image velocimetry (PIV) was applied to a flow measurement in a transonic centrifugal impeller. A phase locked measurement technique every $20\%$ blade pitch enabled a reconstruction of a velocity field over one blade pitch. The measured velocity field at the inducer of impeller clearly showed a shock wave generated on the suction surface of a blade.

  • PDF

2차원 직선 정지 익렬에서의 비점성 천이음속유동에 관한 수치적 해석 (Numerical Analysis of 2D, Steady, Inviscid Transonic Flow Through Stationary Compressor Cascade)

  • 최인환;이진호;조강래
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1244-1253
    • /
    • 1990
  • 본 연구에서는 Denton이 제시한 개선된 시간진행법을 이용하여 2차원 직선 정 지 익렬의 유동해석 프로그램의 개발을 목적으로 하고 있으며 기존 프로그램의 안정성 과 수렴의 개선에 역점을 두고 진행하였다. 수치계산 결과는 타당성을 입증하기 위 하여 실험결과 및 Braembussche의 특이점법 수치계산 결과와 비교 검토 하였으며 충격 파가 존재하는 천이음속의 유동에 대하여 수치계산을 실시하였다.

Optimization of Rotor Blade Stacking Line Using Three Different Surrogate Models

  • Jang, Choon-Man;Samad, Abdus;Kim, Kwang-Yong
    • 한국유체기계학회 논문집
    • /
    • 제10권2호
    • /
    • pp.22-31
    • /
    • 2007
  • This paper describes the shape optimization of rotor blade in a transonic axial compressor rotor. Three surrogate models, Kriging, radial basis neural network and response surface methods, are introduced to find optimum blade shape and to compare the characteristics of object function at each optimal design condition. Blade sweep, lean and skew are considered as design variables and adiabatic efficiency is selected as an objective function. Throughout the shape optimization of the compressor rotor, the predicted adiabatic efficiency has almost same value for three surrogate models. Among the three design variables, a blade sweep is the most sensitive on the object function. It is noted that the blade swept to backward and skewed to the blade pressure side is more effective to increase the adiabatic efficiency in the axial compressor Flow characteristics of an optimum blade are also compared with the results of reference blade.