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ABSTRACT

This paper describes the shape optimization of rotor blade in a transonic axial compressor rotor. Three
surrogate models, Kriging, radial basis neural network and response surface methods, are introduced to find
optimum blade shape and to compare the characteristics of object function at each optimal design condition.
Blade sweep, lean and skew are considered as design variables and adiabatic efficiency is selected as an
objective function. Throughout the shape optimization of the compressor rotor, the predicted adiabatic efficiency
has almost same value for three surrogate models. Among the three design variables, a blade sweep is the
most sensitive on the object function. It is noted that the blade swept to backward and skewed to the blade
pressure side is more effective to increase the adiabatic efficiency in the axial compressor. Flow characteristics
of an optimum blade are also compared with the results of reference blade.

transonic compressor rotor.
One of the most significant design trends in a

1. Introduction

i i lade i . . .
Study on the optimum design of a rotor blade in a transonic compressor rotor is the use of aerodynamic

sweep. Watanabe and Zangenehm reported that the blade
sweep in the design of a transonic turbomachinery blade

transonic axial compressor is important to enhance
rotor performance.

In the blade shape optimization of an axial
compressor rotor, the use of blade lean (dihedral),
sweep, and skew (stacking line in rotational direction)
has become a matter of interest in the design of
turbomachinery blades. These
which form a three-dimensional stacking line is
introduced to reduce shock losses, corner separation
in the blade hub, and tip clearance losses in a

shape parameters
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is an effective parameter to control the strength and
position of the shock wave at the tip of the transonic
rotors. Denton and Xu® investigated the effects of
sweep and lean on the performance of a transonic fan
and showed that the stall margin was significantly
improved with the forward swept blade although a very
little change in the peak efficiency was produced by the
blade sweep or lean.

There are a number of studies on the advantages
of a skewed rotor. Fischer, et al.”’ reported the effect
of bowed stators on the performance of a compressor,
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Table 1 Design specifications of NASA rotor 37

Mass flow, kg/s 20.19
Rotational speed, rpm 171887
Pressure ratio 2.106

Inlet hub-tip ratio 0.7

Inlet tip relative Mach no. 14

Inlet hub relative Mach no. 113
Tip solidity 1.288

Rotor aspect ratio 119

Number of rotor blades 36

Station 1
I3

Fig. 1 Meridional view of Rotor 37

and showed that the separation was reduced in the
bowed stator leading to increase in the stagnation
pressure ratio and efficiency.

The authors investigated to understand the effects
of design parameters on the performance of an axial
compressor rotor and stator™®. Jang et al® has
shown by shape optimization of an axial compressor
blade using blade sweep, lean and skew as variables
that efficiency is enhanced by suppressing the
separation area on the blade suction surface.

On the other hand, surrogate models are being
used widely in multidisciplinary optimization. Queipo
et al.9 reviewed various surrogate based models used
in aerospace applications. Shyy et al."” applied global
optimization methods to design rocket engine. Samad
et al® applied multiple surrogate models on the
optimization of an axial compressor rotor using the
design variables of blade sweep, lean and skew. They
reported that the
surrogate models show good overall performance to

weighted averaged multiple

predict the optimum values of the objective functions.

In the present study, three swrrogate models
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combining with three-dimensional Navier-Stokes
solver are introduced to find optimum blade shape of
a transonic axial compressor operating at the design
flow condition. That is, Kriging, radial basis neural
network and response surface methods are compared
to evaluate their effects on object function, and blade
sweep, lean and skew are considered as design
variables. The effect of each variable on performance
is also analyzed. Detailed internal flow analysis is

performed in relation with the efficiency enhancement.

2. Test Axial Compressor

NASA rotor 37“”, which is a low-aspect ratio
axial-flow compressor rotor, is considered in the
present shape optimization problem. The detailed
specifications of the compressor are summarized in
Table 1. The rotor tip clearance is 0.35%6 mm (0.45
percent span). The measured choking mass flow -rate
is 2093 kg/s, which corresponds to 103.67% of the
design flow rate”.

The meridional view of the axial compressor is
shown in Fig. 1. Total pressure, total temperature,
and adiabatic efficiency in relation with the mass flow
rates are measured at inlet (station 1) and outlet
(station 2) positions as shown in Fig. 1. The inlet and
outlet positions are located at 41.9 mm upstream of
the tip leading edge of the rotor and at 101.9 mm
downstream of the tip trailing edge of the rotor,
respectively.

3. Shape Optimization of Rotor Blade
3.1. Surrogate Models

Three different surrogate models, Kriging (KRG),
radial basis neural network (RBNN) and response
surface (RSM) methods are introduced to optimize the
shape of rotor blade and to compare their results on
compressor rotor performance.

To optimize the blade shape, initially an objective
function is defined. Design variables are selected
among the varables for which objective function is
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Fig. 3 Definition of blade sweep(top view)

sensitive, In the next step, the value of objective
function at each experimental point is obtained by
numerical analysis. Finally, surrogates are constructed
to obtain the optimal points.

For the curve fitting of experimental points,
Kriging method adopts deterministic technique where
RSM is simply a regression analysis to fit a second
order approximate curve.

RSM(IO), which is a global optimization method,
does not require calculation of the local sensitivity of
each design variable, and is able to perform tasks in
parallel easily. The RSM can utilize information
collected from various sources and by different tools.
Thus, this method is effective for both of single- and
multi-disciplinary optimization problems.

In order to reduce the number of data needed for
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constructing a response swface, the design of
experiment (DOE) is important for selecting design
points. D-optimal designm) is employed in the present
work for sampling points in design space. Design
space is constituted by the upper and lower limits of
the variables.

Kriging method (KRG)™ uses spatial correlation
information and estimates the analysis results in the
sampling points. Linear polynomial function with
Gauss correlation function is used for model
construction in KRG. Kriging postulation is the
combination of global model and local departures of
the following form:

F(x)= f(x) + Z(x) )}
where F(x) represents the unknown function, f(x)
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is the known function of X, and Z(x) is the realization
of a stochastic process with mean zero and non-zero
covariance. A linear function, f(x) is fitted first, and
real points are interpolated on it to get mean zero.
Here, f(x) is global design space, while Z(x) is the
localized deviations.

Radial basis neural network method (RBNN)" is a
two layer network and uses a radial basis transfer
function in its hidden layer and a linear function in its
output layer as shown in Fig. 2. The design
parameters for this function are spread constant (SC)
and a user defined error goal (EG). SC value is
selected in such a way that should not be so large
that each neuron will respond same for the all input,
and that should not be so small that the network will
be very high sensitive for every input within design
space. EG or mean square error goal selection is also
important. A very small error goal will produce over
training of the network while a large error goal will
influence the accuracy of the model. Allowable error
goal is decided from the allowable error from the
mean input responses. In MATLAB™ newrb is the
function for RBNN design.

3.2. Objective Function and Design Variables

In the present study, adiabatic efficiency is selected
as an objective function of the optimization.

To enhance the adiabatic efficiency of the
compressor rotor, three-dimensional blade stacking
line is optimized by introducing three shape variables;
namely sweep, lean, and skew as shown in Figs. 3-5.
The term of sweep is used to describe movement of
airfoil section in the manner shown in Fig. 3. That is,
movement parallel to the airfoil chord line is termed
sweep. A sweep value, o in Fig. 3, is defined at the
rotor tip and normalized by the axial tip chord (=
27.77 mm). The blade sweep is taken to be positive if
the airfoil sections are moved in the downstream
direction. The line of the swept blade between the
rotor tip (¢ in Fig. 3) and hub (= zero) is linearly
connected while the gap of the tip clearance is kept
constant.
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Table 2 Design space of blade sweep, lean, and skew

Variables LB‘;:; Middle ggfjg
Sweep () % 0.0 126 5.2
Lean (b) % -36 -18 00
Skew (g) rad 0.0 0.05 0.1

Fig. 6 Computational grids

Figure 4, which is top view of the rotor, shows the
definition of blade lean (or dihedral). Lean is defined
when the blade moves normal to the airfoil chord line.
The lean value, p in Fig. 4, is defined at the rotor tip
and normalized by the axial tip chord. The blade lean
is taken to be positive if the airfoil sections are
moved to the blade suction side. The value of blade
lean is zero at hub, and is linearly connected to the
rotor tip Keeping constant tip clearance.

Finally, a skew line is introduced to optimize the
blade stacking as shown in Fig. 5. The skew angle
defined at rotor tip, y in Fig. 5, is taken to be positive
if the skew line of the rotor tip bends to the blade
pressure surface side. The skew line is formed by a
second order polynomial curve. To complete the skew
line, skew angles at hub and at 50 percent span are
set to zeros.

The range of each variable for selection of the
points for response evaluation is determined by
preliminary calculations, and is summarized in Table 2.
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Table 3 Optimum value of design variables

Design Variables KRG RBNN RSM
Sweep (@) % 117 104 102
Lean (b) % -0.1 00 -09
Skew (g) rad. 0.064 0.061 0.059

Table 4 Predicted and calculated values of adiabatic
efficiency at optimal condition

Predicted | Calculate o
. I
Models R;f Eff. % | d Eff (FEITI‘;Z)//; it
? (Fp) | % (Fe) |~ P P e
KRG 90.10 89.82 0.3107 1.31
RBNN ii 90.06 89.92 0.1555 143
RSM 90.07 89.85 0.2443 135
100 — < —
80 —|
a
B [m]
a
© 60 ~ o
g i Reference Blade O
o, . d
v 4040 Optimum by KRG 1
i Optimum by RENN|
- — -~ Optimum by RSM
20 —
[l ] Experiment
o+
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Fig. 7 Spanwise distribution of efficiency

3.3. Numerical Analysis Method

The three-dimensional thin-layer Navier-Stokes
and energy equations are solved on body-fitted grids
using an explicit finite-difference scheme. An explicit
Runge-Kutta scheme proposed by Jameson, et al is
used to solve flow from mitial to steady state with a
spatially varying time step to accelerate convergence.
Artificial dissipation terms have been added to resolve
shocks. The algebraic turbulence model of Baldwin

and Lomax“® has been employed to estimate the eddy
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viscosity.

A composite grid system with structured H-,C-,
and O-type grids is adopted to represent the
complicated configuration of the axial compressor.

Figure 6 shows the computational grids. H-type
grid consists of 60X36X63 grids (in the streamwise,
pitchwise and spanwise directions, respectively), and
is introduced for the inlet flow region. C-type grid
consists of 350X46X63 grids, and is used for the
blade passage. The O-type grid embedded in the tip
clearance consists of 182X13X13 grids. Grid spacing
for the first grid point from the blade surface gives y°
< 50. The whole grid system has about 1,181,000 grid
points. The average number of iterations and CPU
time for the converged solution are approximately
3,000 and 35 hours with supercomputer of NEC SX-6
(144 GFLOPS), respectively.

Mach numbers in each direction, total pressure and
total temperature are given at the inlet. At exit, the
hub static pressure ratio has been specified and the
radial equilibrium equation is solved along the blade
span. A periodic tip clearance model is used to resolve
the tip clearance flow explicitly. No-slip and adiabatic
wall conditions are used at the wall boundaries. For
reducing the computational load, flow field in a single
blade passage is simulated by applying periodic
boundary condition in the tangential direction.

4. Results and Discussion

4.1. Optimization of blade shape by three different
surrogate models

The spanwise distributions of an adiabatic efficiency
obtained by numerical simulation are compared with
the experimental results at the design flow rate in
Fig. 7. In the figure, the thin solid line represents the
value determined by numerical simulation, and open
rectangular symbols are experimental results. The
adiabatic efficiency is obtained by averaging the local
values tangentially. It is noted that the adiabatic
efficiency obtained by numerical simulation matches
relatively well with the experimental results for the
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(F-Fopt)/Fopt
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Fig. 8 Sensitivity analysis for optimum shape by RSM

[

Reference (solid line)

Fig. 9 Optimum blade shape

reference blade although the adiabatic efficiency is
locally overestimated as compared with the experimental
one.

The optimization results for the three different
surrogate models are summarized in Table 3. The
optimum values of the blade sweep and the blade
skew are almost same for three surrogate models.

For the RSM, 25 training points determined by a
analyzed. To
uncertainty in the set of coefficients in a polynominal,
ANOVA and provided by
t-statistic are used””. In the present calculation, the
value of adjusted R? is 0.9378.

The other surrogate models are constructed using

D-optimal design are measure

regression  analysis

the same data set. For KRG the initial parameters for
gauss correlation are set properly. SC and EG for
RBNN are set by some experiments to generate the

FHIIHAML HI10A, 25, 2007

Rotation

Rotatign

(b) 90 percent span
Optimum by RBNN

Fig. 10 Mach number contours (interval
between contours = 0.05)

Reference

reasonable number of neurons. Optimal points are
found by sequential quadratic programming (SQP)™
from all the constructed surrogates.

Predicted and calculated
efficiency at the optimal condition of design variables

values of adiabatic

are shown in Table 4. The predicted efficiencies are
obtained by the surrogate models directly. The
calculated
numerical simulation using the optimum value of
The predicted and calculated
efficiency is almost same for the three swrogate

efficiency is determined through the

design variables.

models although the band of optimum skew value is
wide as shown in Table 3. The prediction error
normalized the difference between the predicted and
calculated efficient by the predicted efficiency has the
lowest value for the RBNN. It should be noted that
the optimum results of KRG and RSM are also
similar to that of RBNN. Through the shape
optimization using three surrogate models, the
increase of adiabatic efficiency to the reference is 1.43

percent for RBNN.
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Fig. 11 Limiting streamlines on the blade surfaces

Sensitivity analysis for the three design variablesis
performed to evaluate the parameter effect on the
object function, adiabatic efficiency. The optimal
efficiency is Fopt and deviating variable values by
10% from optimal point and objective function values
(F) are calculated by polynomial equation generated
for RSM.

Figure 8 shows the results of sensitivity analysis
for the optimum shape. As shown in the figure, the
blade sweep is the most sensitive on the object
function. This means that the shape optimization
using blade sweep is the most effective to increase an
adiabatic efficiency in axial compressor.

Figure 9 shows the three-dimensional blade shapes
of the reference and the optimum rotor blades. The
blade swept to backward and skewed to the blade
pressure side is more effective to increase the
adiabatic efficiency in the axial compressor.

4.2 Optimization of blade shape by three
different surrogate models
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(b) Blade trailing edge
Optimum by RBNN

Fig. 12 Axial velocity normalized by sound velocity
(interval between contours = 0.05)

Reference

Flow characteristics inside the blade passage for
the reference and optimum blades using the results of
RBNN are analyzed in the following text.

The spanwise distributions of an adiabatic efficiency
for the reference and optimum blades using three
surrogate models are compared at the design flow
rate as shown in Fig. 7. In the figure, spanwise
distribution of adiabatic efficiency has almost same
value for three surrogate models. Relatively large
increase of adiabatic efficiency is distributed between
50 and 9 percent span. The largest increase in
efficiency compared to the reference blade is observed
near 75 percent span.

Figure 10, which is perspective view from the
casing, shows Mach number contours on the plane of
75 and 90 percent span of the reference and optimum
blades. The 75 percent span is the position where
relatively large increase in adiabatic efficiency is
observed as shown in Fig. 7. In Fig. 10, the inflow is
accelerated to supersonic state near the inlet of the
blade passage. That is, a bow shock is generated

SHIIAME H102&, H2&, 2007



Optimization of Rotor Blade Stacking Line Using Three Different Surrogate Models

(b) Optimum by RBNN

Fig. 13 Distribution of vorticity on the quasi—orthogonal
planes to the leakage vortex and leakage
streamlines (interval between contours= 1.0)

upstream of the leading edge of the rotor, and a
passage shock develops at the rotor suction surface. It
is found that the interference position of the passage
shock at the blade suction surface is moved to
downstream for the optimum blade as compared to
that for the reference one. This means that the local
increase of an adiabatic efficiency
direction, especially at 75 and 90 percent span, has
close relation to the position of the passage shock. It
is also found that the intensity of high Mach number
at the upstream of the blade leading edge and at the
blade passage is weakened in case of optimum blade
using the results of RBNN.

Figure 11 shows the limiting streamlines on the

in spanwise
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blade suction and pressure surfaces for the reference
and the optimum blades obtained by RBNN. On the
blade pressure surface, all limiting streamlines
develop from blade leading edge to trailing edge
without separation for both cases. On the other hand,
separation line is formed on the blade suction surface
due to interference between the passage shock and
the suction surface boundary layer.

An attachment line is also observed behind the
separation line for the reference and optimized cases.
Outward radial flow caused by centrifugal effect is
also visible at downstream of the separation line.
Although the separation line is noticed for both cases,
the line for the optimized blades is largely moved
towards downstream near the 75 percent span as
compared to that for the reference one. Relatively
high increase in efficiency shown in Fig. 7 is due to
the reduction of separation area on blade surface.

Figure 12, which is the perspective view from
downstream, shows the distributions of axial velocity
normalized by Mach number at the 30 percent chord
from blade leading edge and at the blade trailing edge.
As shown in Fig. 12(a), relatively low axial velocity
region observed near the blade suction side of the
casing for the reference blade is recovered by
optimizing the blade stacking line. Uniform axial
velocity is also observed at the blade trailing edge for
optimum blade.

Figure 13 shows the distributions of the vorticity
on six planes nearly perpendicular to the tip leakage
vortex and leakage streamlines surrounding the
vortex core. In the figure, the vorticity is shown only
from zero to seven. The leakage vortex formed on the
blade suction surface by the induced velocity
generated between a leakage jet flow and a main
through flow is shown in the blade passage. For both
cases, the leakage vortex is tightly rolled up at
upstream of the bow shock with the high vorticity.
The vorticity, shown upstream of the bow shock,
concentrates on the leakage vortex core. However, the
distribution expands widely just
downstream of the bow shock due to the interference
between the leakage vortex and shock wave. As

of vorticity
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shown on the plane IV, the region having a vorticity
above zero is spread out to about 10 percent of span
from the rotor tip of the reference blade. It is found
that relatively small region having a vorticity above
zero 1s formed on the plane IV as compared to the
reference blade, This is mainly caused by weakened
Mach number as shown in Fig. 10. It is noted that the
reduced vertical flow in the optimum blade results in
uniform axial velocity as shown in Fig. 12.

From the above figures, the increase of adiabatic
efficiency for the optimum blade is caused by
reduction of the bow shock upstream of blade leading
edge. The reduced Mach number induces concentrated
vorticity at downstream of the bow shock, thus,
makes a uniform axial velocity as compared to
reference blade.

5. Conclusion

The shape optimization of rotor blade in a
transonic axial compressor rotor is performed by three
surrogate models and the three-dimensional Navier—
Stokes analysis. By optimizing blade sweep, lean and
skew of the rotor, the adiabatic efficiency is increased
by 1.43 percent as compared to that of the reference
blade at the design flow condition. The shape
optimization of rotor blade to enhance an adiabatic
efficiency is very effective and reliable for three
surrogate models; Kriging, radial basis neural network
and response swrface methods. Among the design
variables of stacking line, blade sweep is the most
effective in increase the performance of the compressor
rotor. It is found that the increase of adiabatic
efficiency for the optimum blade is caused by
reduction of the bow shock upstream of blade leading
edge and reduction of separation area on blade
surface.
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